The version of record is available at: http://dx.doi.org/10.1561/0600000083

Publishing and Consuming 3D
Content on the Web: A Survey

Marco Potenziani', Marco Callieri?, Matteo Dellepiane® and
Roberto Scopigno?

Visual Computing Lab, ISTI CNR; marco.potenziani@isti.cnr.it
2Visual Computing Lab, ISTI CNR; marco.callieri@isti.cnr.it
3Visual Computing Lab, ISTI CNR; matteo.dellepiane@isti.cnr.it
4Visual Computing Lab, ISTI CNR; roberto.scopigno@isti.cnr.it

ABSTRACT

Three-dimensional content is becoming an important com-
ponent of the World Wide Web environment. From the
advent of WebGL to the present, a wide number of solutions
have been developed (including libraries, middleware, and
applications), encouraging the establishment of 3D data as
online media of practical use. The fast development of 3D
technologies and related web-based resources makes it diffi-
cult to identify and properly understand the current trends
and open issues. Starting from these premises, this survey
analyzes the state of the art of 3D web publishing, reviews
the possibilities provided by the major current approaches,
proposes a categorization of the features supported by exist-
ing solutions, and cross-maps these with the requirements of
a few main application domains. The results of this analysis
should help in defining the technical characteristics needed
to build efficient and effective 3D data presentation, taking
into account the application contexts.

Marco Potenziani, Marco Callieri, Matteo Dellepiane and Roberto Scopigno (2018),
“Publishing and Consuming 3D Content on the Web: A Survey”, Foundations and
Trends® in Computer Graphics and Vision: Vol. 10, No. 4, pp 244-333. DOI:
10.1561/0600000083.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

1

Introduction

Three-dimensional (3D) data has evolved from being merely specialized
content, used just by a small community of professionals, to a com-
pletely integrated web medium, now reaching a reasonable maturity
level. Although the technological foundations needed to enable this new
medium to bloom have been available for a few years, users’ perceptions
have changed only recently and 3D web content has now started to
be able to reach the wider public. In this evolutionary process, a key
role was played by the democratization of 3D content creation (the
availability of low-cost 3D scanning devices, improvement of 3D-from-
images/structure-from-motion approaches, the consolidation of manual
modeling systems) and the introduction of a series of game-changing
contributions addressed to a wider range of target users (3D printing
applications, 3D viewer and editing systems embedded in common
operating systems, etc.).

Nowadays, these new trends are pushing 3D content toward an
unexplored world, where data management, user interactions, and cross-
media integration are open issues still to be solved. Obviously the novel
ecosystem we are envisioning is part of the web (a democratic space
“par excellence”), and in recent years has been the subject of renewed

The version of record is available at: http://dx.doi.org/10.1561/0600000083

attention concerning the integration of three-dimensional content and
the development of resources specifically aimed at this.

However, despite the increased interest in recent years, the first
attempts to bring 3D content online date back a long time. Indeed, web
developers and 3D professionals understood very quickly the potential
relevance of opening the web to 3D data, so that 3D should not stay
trapped in standalone applications. A few months after the release of
the first multimedia browser [able to manage just text and images;
163], Raggett [157] presented his vision for a platform-independent
3D standard for the web by proposing the Virtual Reality Modeling
Language (VRML). The Web3D denomination emerged immediately
after.

Unfortunately, such a prompt start was not followed by the same
pace in the development of practical and consistent solutions, and the
path toward an effective Web3D resulted in a long and winding process.
Some major pioneering landmarks were the Macromedia Flash plug-in
[44]—released in 1996, it was the direct ancestor of Adobe Flash and
probably the first approach to handling fully interactive multimedia
content online—and the Apple Webkit CANVAS [75], the first HTML
drawing element controlled by means of JavaScript. Nevertheless, for
a long time the web landscape has just been populated by a series of
proprietary systems, third-party software, and closed solutions. Not
having a common and recognized development standard was a strong
limiting factor for the extensive publication and use of 3D content on
the web.

The release of the WebGL application programming interface (API)
[100] was a major breakthrough, starting the rapid growth of a new
generation of applications, based on a common standard, that were
able to act directly on the rendering pipeline and, above all, were
supported by all common web browsers. In short, thanks to WebGL,
Web3D entered in a new era. The first survey completely dedicated to
web-based 3D graphics [57] demonstrated the mature status reached in
this domain just four years after the introduction of WebGL.

Nowadays, the proposed Web3D approaches (considering both aca-
demic and commercial systems) are still very heterogeneous, since they
adapt their data presentation strategy to the 3D content, the target

The version of record is available at: http://dx.doi.org/10.1561/0600000083

4 Introduction

users, the publishing venue typology, the application field, and the
planned outcome. The growing number of solutions has contributed
to familiarizing users with the presence of 3D on the web, but it has
also resulted in an extremely complex scenario, where developers and
users often find it difficult to orient themselves, especially those devel-
opers with a poor awareness of the particular needs of each specific
combination of 3D data and application domain requirements.

This survey presents a review aimed at coping with these needs. Our
main goal is to define a schema of the available possibilities and features
supported by the enabling technologies and implemented systems. This
is aimed at providing the reader with a map that, depending on the
application field, could help in navigating through the technical charac-
teristics needed to build an efficient and effective Web3D presentation.
Our hope is that the result of this survey could be helpful for readers
interested in mastering concepts that characterize the different phases of
the 3D publishing process: content creators (enhancing their awareness
about the Web3D ecosystem of libraries and authoring tools), content
consumers (increasing their ability to fully experience the capabilities of
existing systems), and finally also researchers and developers of future
solutions.

For the purpose of this review we have evaluated a heterogeneous set
of software applications and the state of the art of the scientific literature.
The characterization of available solutions proved to be difficult, due to
the heterogeneity of the approaches proposed and the number of issues
to be considered. Moreover, this survey is designed to focus not only on
the current trends, but also on the big challenges that researchers and
developers face when sophisticated 3D graphics have to be efficiently
ported to the web.

This monograph is organized as follows. Chapter 2 provides a short recap
of the evolutionary process bringing us from the early Web3D phases up
to the launch of WebGL. Chapter 3 presents three grand challenges to
be faced in the development of 3D web content and resources. Chapter 4
presents the categorization adopted for the analysis of the state of
the art of current Web3D solutions and technologies, defining a set of
features required for 3D web publishing which are described in detail in

The version of record is available at: http://dx.doi.org/10.1561/0600000083

Chapter 5. Leveraging the previous results, Chapter 6 outlines the profile
of the available publishing solutions and assesses the current solutions for
a representative group of application fields. Finally, Chapter 7 presents
the final considerations and future challenges.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

2

Web3D, from Plug-ins to WebGL

A pioneering work [146], published just a few months after the first
WebGL release [100], was already asking the question “Is 3D finally
ready for the web?” The paper’s author stated that, despite the 16 years
that had elapsed since the universally recognized Web3D foundation
stone of the VRML web standard [157], 3D and the web still seemed
to be two distinct worlds. However, although it was still not easy to
find 3D content online, the recently introduced technology justified the
expectation of a forthcoming major change. In particular, Ortiz’s paper
suggested that WebGL would be the “most interesting development”
for the future of Web3D, as in fact it happened. But let us start from
the beginning.

2.1 Early Approaches

The first attempts to publish 3D content online have led to a heteroge-
neous set of approaches, often very different from each other. This was
mainly due to the lack of a real standard for 3D graphics on the web.
Actually, two different ISO standards were available in the early phase:
the already mentioned VRML [157], and X3D [207, 29]. Unfortunately,
since they were designed basically as file/scene formats, they failed

The version of record is available at: http://dx.doi.org/10.1561/0600000083

2.1. Early Approaches 7

to cope with all the needs of web publishing. Moreover, they needed
additional software to enable visualization in web browsers. This last
issue was probably the biggest hurdle to the success of that generation
of solutions. Those attempts required the design (and use) of propri-
etary plug-ins, inaccessible to independent developers, that were poorly
integrated with other web page elements.

Besides the previously mentioned Adobe Flash [44], Sun Microsys-
tems Java applets [24] were presumably the earliest plug-in able to
integrate computationally onerous content on the web. First released
in 1995, these are small client-side applications executed in the Java
Virtual Machine, an abstract computing machine developed for running
Java bytecode in a hardware-agnostic mode. Although Java applets
probably constitute one of the first attempts to access the graphical
processing unit (GPU) from a web browser (well before WebGL), they
were not specifically aimed at managing 3D content. A further develop-
ment in 1998 was the release by Sun of Java3D [181], an API expressly
designed to simplify the development of 3D web applications. Java3D
provided high-level constructs to create and manipulate 3D geometries,
supporting both Direct3D and OpenGL. Java3D was later discontin-
ued, but the effort to embed 3D content online using Java has been
carried on by other libraries, like JOGL [Java OpenGL; 91] and LWJGL
[Lightweight Java Game Library; 119], known for being used in the
development of the popular Minecraft game [149].

The whole Java ecosystem ignited and supported the design of
interesting solutions at the beginning of the Web3D era, concerning
both academic outcomes and software results. To cite a few: RAVE
[Resource-Aware Visualization Environment 71], an applet designed for
collaborative server-side visualization; COLLAVIZ [53], a framework for
collaborative data analysis developed using JOGL; ParaViewWeb [94],
an applet for remote 3D processing and visualization (later adapted
to WebGL); and finally OSM-3D [214], an interactive 3D viewer for
OpenStreetMap data developed as an applet.

Java-based applications were thus the first approaches to support
3D content publishing online, but not the only ones. Indeed, just a year
after Sun’s initial release, Microsoft unveiled ActiveX [126], essentially a
framework for downloading multimedia content from the web. Developed

The version of record is available at: http://dx.doi.org/10.1561/0600000083

8 Web3D, from Plug-ins to WebGL

with a philosophy similar to Java applets, it does not use files compiled
to bytecode, but dynamically refers to OS libraries (which share the
same memory space with the browser). This solution makes ActiveX
very fast in execution, but causes drawbacks related to security and
OS dependency which hindered the wider adoption of this solution.
Microsoft changed their approach in 2007 by releasing Silverlight [127],
a client-side API for developing web applications, this time closer to the
Adobe Flash philosophy. Silverlight is another solution not specifically
aimed at 3D, but is able to provide a programmable graphics pipeline
and basic 3D transforms, thus resulting in a step forward from the
Adobe Flash plug-in, which was not able to access GPU functionalities
until the release of the Stage 3D add-on [3].

Conversely to Adobe Flash, the Google O3D project [65] was de-
signed from the beginning to support the use of GPU features (either
via Direct3D or OpenGL). Released in 2009 as an open-source plug-in
for creating interactive 3D applications, it was ported to WebGL just a
few months after.

Finally, two approaches developed just before WebGL were the
Opera Software plug-in [92] and the Canvas3D [129] project, with its
supporting library C3DL [114]. These solutions, aimed at creating
an OpenGL context in the HTML CANVAS element, were WebGL
precursors, later becoming part of the new standard.

2.2 The WebGL Revolution

Anticipated by the aforementioned Canvas3D experiment, WebGL was
finally announced by the Khronos Group in late 2009. It introduced a
new standard for developing 3D applications on the web which spread
rapidly in a very short period, revolutionizing the world of Web3D.

WebGL is a royalty-free API fully integrated with the HTML Doc-
ument Object Model (DOM). It is based on OpenGL ES 2.0 [99], the
OpenGL API for embedded systems (e.g. mobile or portable devices,
possibly with lower-end computing resources, power consumption con-
straints, low bandwidth, reduced memory space, etc.). This makes
WebGL extremely optimized and computationally light, and thus ideal
for the web environment.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

2.2. The WebGL Revolution 9

The main advantages of WebGL are:

e cross-browser and cross-platform compatibility (this means that
a WebGL application can run on any platform without the need
to rewrite source code or install additional software);

e tightly integrated with HTML content (this includes layered com-
positing, interaction with other HTML elements, use of the stan-
dard HTML event-handling mechanisms, etc.);

e a scripting environment that makes it easy to prototype interactive
3D graphics content (making it unnecessary to compile and link
before you can view and debug the rendered graphics);

e based on familiar and widely accepted 3D graphics standards,
which implies several advantages, such as the chance to use the
GL shading language;

e provides access to the GPU programmable pipeline (exploiting
hardware-accelerated 3D graphics in the browser environment).

Thanks to these features, WebGL was able to rapidly checkmate the
other 3D web publishing approaches, contributing to the quick extinction
of all other non-WebGL solutions.

Although it is designed to work strictly in conjunction with extant
web technologies like HTML and JavaScript, WebGL remains quite a
low-level API, so it is not easy to master without solid skills in computer
graphics (CG) and programming. For this reason, the years immediately
after its release have seen the proliferation of middle-level wrapper
libraries, aimed at making the use of this new standard easier.

Among these middleware solutions, one of the first to be released was
SpiderGL [197, 47, 48], a JavaScript library providing typical structures
and algorithms for real-time rendering. SpiderGL abstracts a lot of
WebGL methods without forcing the use of a specific paradigm (such
as the scene graph, a hierarchical structure discussed in more detail in
Section 5.2), and without preventing low-level access to the underlying
WebGL graphics layer. Other mid-level libraries appearing at almost
the same time as SpiderGL were WebGLU [46], supporting a set of

The version of record is available at: http://dx.doi.org/10.1561/0600000083

10 Web3D, from Plug-ins to WebGL

low-level utilities and a high-level engine for developing WebGL-based
applications, and GLGE [28], which provides a declarative method for
programming a 3D scene. These were followed a year later by PhiloGL
[17], a framework for data visualization, creative coding, and game
development; Lightgl.js [205], a low-level wrapper that abstracts much
code-intensive WebGL functionality; and KickJS [140], a game-oriented
engine that abstracts WebGL to make game programming easier.

At the same time as these mid-level JavaScript libraries, some
focused solutions were also developed to build a bridge between WebGL
and some popular 3D software applications. Among these were Inka3D
[208], an exporter plug-in for Autodesk Maya [11]; J3D [51], a utility to
export static scenes from Unity3D [191]; and KriWeb [122], a Blender
[21] exporter written in Dart.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

3

Grand Challenges for 3D on the Web

The WebGL revolution opened up many possible uses for 3D content
on the web, and this impressive potential was clear right from the
beginning. Nevertheless, while several characteristics of local tools could
be easily mapped to web applications, some solutions were needed
to handle the peculiarities of remote use characteristic of the web.
In this chapter we focus on the three main challenges affecting the
effectiveness of Web3D solutions, which justified some intense research.
These three challenges concerned the dichotomy between a declarative
and an imperative approach when defining an online 3D scene, the
management and remote visualization of a (complex) 3D dataset over
(possibly slow) network connections, and the policies for creating and
protecting 3D content in collaborative/sharing environments. For each
of these challenges we present a synthetic overview of the basic research
and of the seminal experiments that led to the current wide range of
solutions, also indirectly providing a preliminary outline of the open
issues.

11

The version of record is available at: http://dx.doi.org/10.1561/0600000083

12 Grand Challenges for 3D on the Web

3.1 The Declarative/Imperative Dichotomy

The definition and management of a 3D scene can be done with several
levels of complexity, and the more complex the scene, the harder it is
to provide a structure that can be easily used by non-experts. This is
also true for local 3D rendering, but it poses severe challenges in the
case of online 3D content creation and interaction.

A few years after the release of WebGL, Jankowski et al. [88] pre-
sented a classification matrix that became popular in the academic
world, being recalled in many later works [e.g. 95, 57]. The proposed
scheme introduced a parallel between approaches to 2D and 3D graphics
on the web, classifying the available techniques into two main groups:
declarative and imperative. While both techniques allow the creation,
modification, sharing, and interactive experience of 3D graphics on the
web, they differ in their basic approach and target users. While the
declarative approach exploits the HTML DOM to provide access to
high-level 3D objects (components familiar to the web development
community), the imperative approach uses scripting languages to offer
access to the low-level functionality of the rendering stage (elements
more common among the CG developer community). Although the
distinction between the two approaches is nowadays becoming less and
less substantial, the early years of Web3D were strongly marked by this
dichotomy. This contrast was able not only to catalyze the attention of
the research community, as demonstrated by Jankowski et al. [88] and
similar works, but also to influence a number of design choices which
still characterize Web3D solutions.

Among the main causes of this separation was the strenuous at-
tempt to lead CG solutions (and their developers) to the native web
environment approach, an effort bound to fail in the Web3D environ-
ment, a world in rapid evolution populated by solutions not confined to
watertight compartments but rather inclined to overlap.

However, thanks especially to VRML [157], that represents a seminal
work for the declarative Web3D approach—the declarative approach
came to dominate in many solutions between the late 1990s and the
early 2000s, for example with ARCO [148, 211, 204], ShareX3D [93],
and X3DMMS [215]. VRML was essentially a logical markup format

The version of record is available at: http://dx.doi.org/10.1561/0600000083

3.1. The Declarative/Imperative Dichotomy 13

for non-proprietary independent platforms, using text fields to describe
a simple 3D scene (only the content and basic appearance). In 2004
VRML was superseded by X3D [207], in turn an ISO standard, which
is defined as a royalty-free open standard and run-time architecture
to represent and communicate interactive 3D scenes and objects using
XML. It adds a lot of features to VRML (advanced scene graph, event
handler, data-flow system for node interpolation, etc.), but, analogously
to VRML, it was designed basically as a file/scene format, and moreover
it needs external software, e.g. FreeWRL [178] or View3dscene [96], for
visualization in a web browser.

Despite these evident limitations (and not always continuous sup-
port), many solutions tried the declarative approach in the early years.
One of the first was the Blaxxun Contact plug-in released in 1995,
which evolved into BS Contact [20] in 2002. It is essentially a scalable
multi-user server environment for the VRML developer community.
Another pioneering declarative system was SimVRML [159], which uses
VRML for scientific simulations, followed a few years later by other
interesting attempts like Orbisnap [81], a VRML viewer able to con-
nect with remote servers running Matlab Simulink 3D animation [125];
Octaga Player [141], a solution for building interactive 3D web presen-
tations; Cortona3D [147], a VRML viewer and authoring tool (the last
two solutions were later adapted to WebGL); or InstantReality [59], a
VRML and X3D framework providing support for virtual reality (VR)
and augmented reality (AR).

In order to extend the browser support for X3D, X3DOM [15, 16] was
proposed as a declarative system free from plug-ins, able to integrate
the X3D nodes directly into the DOM content. Defining an XML
namespace and using a special connector component, X3DOM builds a
bridge between the DOM and X3D that allows manipulation of the 3D
content simply by adding, removing, or changing DOM elements. An
approach similar to X3DOM is the XML3D system [175, 176], another
plug-in-free high-level approach which, instead of embedding an existing
framework (X3D) in the browser context (like X3DOM does), tries to
extend HTML, maximizing the use of existing features to embed the 3D
content in the web page. XML3D uses XHTML and, for intensive online
data processing [see, for instance, 104], relies on Xflow [103, 105], an

The version of record is available at: http://dx.doi.org/10.1561/0600000083

14 Grand Challenges for 3D on the Web

“extension” developed to expose system hardware and allowing data-flow
programming.

X3DOM and XML3D have been the last two widespread solutions to
endorse a “pure” declarative approach. Nowadays, many of the features
indicated as characteristic ones in the Jankowski et al. [88] matrix,
such as the scene graph construct for the declarative approach or the
WebGL API for the imperative approach, no longer allow unequivocal
classification of 3D web solutions. A brilliant demonstration of this is
A-Frame [130], a solution that merges a declarative structure and the
famous Three.js [32, 49] WebGL supporting library.

3.2 Managing 3D Data over the Internet

The efficient visualization of 3D data over the Internet has long been
both one of the most important research areas and a characterizing topic
of Web3D. The great number of solutions aimed at 3D web publishing
available nowadays can be misleading in this regard: this topic is still
an active research field, and most of the existing applications work well
because they have been calibrated just to render specific types of highly
optimized 3D assets. A definitive and universal answer to the many
issues characterizing the effective management of complex 3D datasets
online still does not exist.

The difficulties of handling interactive 3D content over a network
mainly arise from insufficient computational resources (usually due
to client-side limitations), poor network capabilities (usually due to
limited bandwidth and latency issues), and the huge amount of data to
be processed (usually due to the intrinsic complexity of the 3D content).

The latter factor is critical, since 3D models are usually complex
resources in terms of elementary components (number of triangles
or points), resolution of the attached texture images, and memory
size. Some examples of 3D models (particularly the more professional
ones) can be misleading, since we may be fooled by a highly optimized
geometry or the extensive use of textures to encode geometric detail and
save on explicit geometry. The more usual models produced nowadays
might be composed of millions of triangles, causing severe network traffic

The version of record is available at: http://dx.doi.org/10.1561/0600000083

3.2. Managing 3D Data over the Internet 15

and resource consumption (especially when represented with naive mono-
resolution formats). In effect, a high polygon count is needed to mask
the approximation of curved surfaces with a tessellated mesh (reducing
the jagged appearance of edges), or to encode in a more correct manner
the color discontinuities when color-per-vertex encoding is used. This
problem becomes even more evident with the high-resolution screens
available today and with the zooming capability provided in most 3D
browsers.

As reported in the recent surveys of Shi and Hsu [169] and Mwalongo
et al. [136], different approaches and techniques have been proposed
over the time to solve these problems. Web-based 3D visualization
in particular has received growing attention in recent years, with an
increasing number of emerging applications. This success has been due to
its ubiquity across platforms (from desktop computers to mobile devices),
but mostly to continuous improvement of the enabling technologies, such
as server-side rendering infrastructures (via grid or cloud computing)
or client-side rendering techniques (via WebGL and HTML5).

Given the importance of interactivity in visualization, 3D web pub-
lishing platforms have been mainly based on the client-side rendering
strategy, performing GPU-accelerated local rendering directly within
modern browsers. This is also the area we will analyze in this work.

The first set of issues in the management of complex datasets resides
in their size: large datasets are problematic in both the transmission
and rendering phases. To cope with these two bottlenecks, all the main
systems currently aimed at interactive web 3D visualization successfully
exploit either layered (discrete sequences of data each of which represents
the object at a different resolution) or multi-resolution (a virtually
continuous set of data representing an object at increasing resolutions)
data encoding. Layered representations are usually called level of detail
(LoD) representations [118].

Despite the fact that technologies to handle large 3D models have
been studied since the mid 1990s [77, 156], decisive advances have
appeared only in the last decade, when it became clear that to effi-
ciently manage 3D content online, web solutions should have to satisfy
specific web requirements [116]. Thus, to take into account these pe-
culiar needs, many researchers began to focus on technologies like

The version of record is available at: http://dx.doi.org/10.1561/0600000083

16 Grand Challenges for 3D on the Web

LoD /multi-resolution representations, progressive data transmission,
and data compression schemes able to balance visualization latency and
to perform well in space/time.

One of the first efforts in this direction was Gobbetti et al. [63], which
proposes the transmission of 3D models parametrized into a quad-based
multi-resolution format. Lavoué et al. [108, 109] suggested iterative
simplification of 3D meshes, encoding their information in a compressed
stream, thus adapting for the Internet the progressive algorithm of Lee
et al. [110], enabling a low compression ratio with a small decompres-
sion time—a solution based on valence-driven progressive connectivity
encoding was introduced by Alliez and Desbrun [7]. Limper et al. [115]
overcame the problem of decompression time/complexity by using dif-
ferent quantization levels for the model vertices and transmitting them
using a set of nested GPU-friendly buffers. More recently, Ponchio and
Dellepiane [151, 152] presented a multi-resolution rendering algorithm
(parallelizable and scalable to very large models) based on Cignoni et al.
[41] that was able to combine progressive transmission of view-dependent
representations and efficient geometric compression/decompression. Fi-
nally, to cope with different issues alternative directions have been
proposed, focusing on improved data organization [e.g. generic formats:
117, 182] or different data types [such as point clouds; 56, 165] for
streamable 3D content.

The works mentioned in this section do allow considerable performance
enhancements; moreover, they represent some real turning points for
many application domains that require online handling of complex 3D
content and where the capability of presenting data at full accuracy
(without using degraded simplified models) is a major need.

However, managing 3D content (and user interaction) over the net-
work raises issues not related just to the sheer size of the 3D data.
Since client-side 3D rendering applications are hosted by web browsers,
the limitations of the client software play a relevant role in the quality
of the resulting visualization. In fact, browsers were not designed to
manage the data-intensive and interaction-packed throughput required
by Web3D applications. The first issue is related to pure computational
power and execution efficiency: web-based code is usually implemented

The version of record is available at: http://dx.doi.org/10.1561/0600000083

3.2. Managing 3D Data over the Internet 17

in JavaScript, which is not a high-performance language like C++
(which, conversely, is the most common choice for the implementation of
3D desktop applications). This situation is slowly changing as the “cloud”
paradigm gains momentum, and modern JavaScript engines are incredi-
bly fast, but this issue still has to be considered when implementing a
Web3D solution.

Related to the size of 3D data are the limits on the size of the local
browser’s memory, cache size, and the number of HT'TP requests usable
simultaneously. Similarly, some web servers may only support certain
types of data requests (e.g., the HI'TP Range request is often used in
multi-resolution schemes, but not all web servers support it).

Another set of issues is related to security. Browsers operate in
a “sandbox environment”: it is almost impossible to directly write
temporary data to disk, and also accessing local resources while working
online is not straightforward. Cross-origin data fetching is also limited,
and a series of precautions and safeguards have been placed on the
execution of JavaScript code. On top of this, the way these limits are
enforced subtly changes across browsers.

Finally, user interaction is also affected by the presence of the browser
as an “interface” to the code. 3D desktop applications are notorious
for their complex inputs using multiple mouse keys and keyboard; the
browser is unable to track some of these events (and others may be
system-reserved). The situation is even more complex with touch-based
inputs, which are supported in various flavors on different OS and
browsers, sometimes “virtualized” as mouse inputs, sometimes as touch
events, that are nevertheless non-uniform across browsers. The user
interfaces of 3D web applications should handle these limitations with
specific web-oriented interaction design.

The search for clever solutions to overcome the limitations of the
browsers, as well as to define proper optimization for 3D data streaming,
rendering, and compression, has shaped the management of 3D data
online, steering the evolution of Web3D. However, as visualization
quality standards continue to improve, these elements are still trending
topics in research, and will surely also remain key components for the
next generation of 3D web publishing solutions.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

18 Grand Challenges for 3D on the Web

3.3 Production and Protection of Shared 3D Content Online

The success of the technologies mentioned in the previous section revo-
lutionized the publishing of 3D content online, bringing new possibil-
ities but also new challenges, some of which are central to a sharing-
oriented environment such as the web. Among these new opportuni-
ties/challenges, the production and protection of shared 3D content
online deserves a special mention, since these topics represent valuable
examples in which it is hard to use or extend standard web frame-
works to 3D graphics, but rather it is necessary to reimplement them
specifically for Web3D.

For instance, the collaborative visualization and creation of 3D
content online has always been an interesting and active research field,
since WebGL does not define how and in what format the data is
transferred to the client, deferring this specification to each application.
Studied and analyzed since the beginning of Web3D—the survey by
Mouton et al. [128] dates back to 2011—collaborative visualization
represents an early component in the design of digital content creation
(DCC) systems.

The first system aimed at demonstrating whether web services
are capable of supporting collaborative visualization was the already
mentioned RAVE [71] Java applet. Designed to determine at run time
the performance of the local client devoted to the rendering, and to
send to it rendering instructions depending on these capabilities (less
powerful clients receive a video feed from a remotely rendered scene,
while more powerful ones receive the polygonal dataset to render it
locally), this system was soon followed by COLLAVIZ [53], a JOGL
framework for collaborative data analysis, and ShareX3D [93], which
was the first implementation of a collaborative 3D viewer based on
HTTP communication.

Nowadays, leveraging network features like XMLHttpRequest (to
request data from a web server) or the WebSockets API (which allows
bidirectional full duplex communication), a fully fledged collaborative

The version of record is available at: http://dx.doi.org/10.1561/0600000083

3.3. Production and Protection of Shared 3D Content Online 19

visualization package can be completely presented in the web browser—
Marion and Jomier’s 2012 pioneering work, which proposes a collabora-
tive prototype for scientific visualization using a WebGL/WebSocket
combination, offers a brilliant demonstration.

Nevertheless, moving from collaborative visualization to collabo-
rative creation of 3D content is not as straightforward as one might
think, the major cause being that CG workflows for working on the
data are still not well established. As shown in the recent work of
Calabrese et al. [33], overcoming issues like the concurrent overlapping
of 3D edits (at different scales) may not be simple (even in systems
not designed to work online). This is the reason why over the years
we have seen a proliferation of non-collaborative web DCC solutions,
as in Ulbrich and Lehmann [190], or collaborative but not completely
web-based applications providing offline editing and online visualization,
as in Dobos and Steed [50]. Only very few solutions have been able
to propose full Web3D systems for collaborative DCC. Among these,
Song et al. [174] proposed 3D-CollaDesign, a web framework aimed
at distributed designers concurrently designing 3D models in different
domains (it uses data replication technology and lock methods to avoid
the potential conflicts and to support data consistency), and Du et al.
[52], a collaborative solution for assembling 3D components (it provides
scene data synchronization, user and data management, and real-time
expansion of the component library).

Another technical challenge, closely connected to online data man-
agement issues, concerns the policies supported for the management of
intellectual property rights (IPR). The difficulties in extending general
purpose techniques to shared 3D content make this a particular chal-
lenge for Web3D. The management of data protection is a core issue
affecting all the media associated with web pages, but it is much more
complex for 3D data since it is a more recent media format without
proper international legislation able to protect it clearly.

The fact that high-resolution models are usually rendered by adopt-
ing multi-resolution and view-dependent techniques represents a form
of implicit protection, since the full-resolution model is never sent for
rendering in its entirety, but Web3D systems send to the client only a
view-dependent model customized for the current view specifications.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

20 Grand Challenges for 3D on the Web

Thus, fraudulent copies of high-quality geometry would need more ad-
vanced methods (reverse engineering techniques). When the 3D object
is a simple mesh, however, and multi-resolution is not needed, IPR
protection becomes a problem.

Current solutions are mostly based on digital watermarking. Wa-
termarking consists of hiding information in a noise-tolerant carrier
signal (like audio, video, or images), and is the process most often
used for tracing copyright infringements. Digital watermarking systems
can be grouped into different schemes depending on the information
needed for watermark detection: “non-blind” or private watermarking,
if the watermark detection requires the original data and possibly also
the embedded watermark; “semi-blind” or semi-private watermarking,
if detection requires the embedded watermark; and “blind” or public
watermarking, if detection requires neither the original data nor the
embedded watermark. These algorithms have been implemented with
success for 1D and 2D data. Unfortunately, implementation of robust 3D
watermarking is much more difficult, due to the topological complexity
of 3D models and the higher number of attacks and manipulations that
watermarks should be robust to when applied on 3D data (such as noise
addition, smoothing, cropping, etc.).

Seminal work on 3D watermarking was performed by Ohbuchi et al.
[143, 144] using a non-blind technique, robust to 3D transformations
and cropping, with the watermark embedded in the geometric domain
modifying either the vertex coordinates or the vertex connectivity. Other
important contributions have been the works by Praun et al. [155], a
detail-preserving non-blind method driven by multi-resolution theory,
resistant against many local transformations such as noise addition and
smoothing; Ohbuchi et al. [145], a non-blind frequency domain Fourier
approach for 3D shapes, requiring manual interaction; Cayre et al. [35],
again Fourier, but in this case blind, extending spectral decomposition
to 3D meshes for robust watermarking; Uccheddu et al. [189], a blind
method decomposing the mesh into a multi-resolution representation
working in the wavelet domain; and Zafeiriou et al. [213], a blind, radial
watermarking method that embeds the watermark in the distribution of
distances between the mesh vertices and its center of gravity, presenting
good levels of robustness at a low computational price.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

3.3. Production and Protection of Shared 3D Content Online 21

Despite all these research efforts exploring a wide space of solutions
(from the spatial to the spectral domain), the search for a functional and
practical watermarking approach for protecting 3D content online is still
a challenging issue [120]. This is mostly because these attempts have
generally led to applications that are demonstrators rather than fully
qualified products, but also because watermarking has led to collateral
issues, such as infringement recognition. After watermarking an asset,
the owner should be able to recognize if a given 3D model has been
produced as a copy of that asset. But to reach this result, one has to
put in place a policy for (a) the retrieval and test of possible copies,
and (b) legally prosecuting the authors of those copies. Since this might
be afforded by large companies, but not by standard users, it easy to
understand that an ideal IPR policy should rather prevent the copying
of the digital data, which is a goal that is very hard to obtain with the
current technologies.

To conclude, both issues (shared content creation and protection man-
agement) are still open issues for Web3D, and solutions able to fruitfully
support all their requirements are rare. However, since the policies
adopted for online 3D data management have a potential impact on the
features and performance of a Web3D platform/system, it is easy to
predict that advancements in these fields will become more and more a
key factor for the success of future 3D web publishing solutions.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

4

Feature-Based Characterization of Web3D
Solutions

Since the first WebGL release, the resulting Web3D growth has resulted
in a myriad of different proposals, diversified depending on content,
target, context, and of course, expected results. In order to define a
schema of the available (or required) features, a categorization of these
approaches is required.

4.1 Which Categorization of the Existing Solutions?

Chasing a representative categorization of the Web3D landscape, we
have surveyed and analyzed a large set of solutions, starting with simple
libraries, moving to middleware solutions, and concluding with the
analysis of complex applications. The decision to cover approaches
going from low-level to high-level solutions (see Figure 4.1) allowed us
to evaluate and review almost the entire 3D web publishing possibilities
and requirements; on the other hand, it has forced us to consider
a collection of contributions inherently heterogeneous, composed of
libraries, tools, frameworks, applications, etc.

Despite these solutions being characterized by different abstraction
levels, they also reveal several deviations from more classical level-
based classifications. This leads to fuzzy boundaries between the various

22

The version of record is available at: http://dx.doi.org/10.1561/0600000083

4.1. Which Categorization of the Existing Solutions? 23

Low High

TOOL FRAMEWORK
TOOLKIT

Level
Solutions

Level
Solutions

Figure 4.1: A representation of the Web3D space reviewed, covering everything
from low-level to high-level solutions.

systems that make it hard to reduce them to fixed reference patterns.
The idealized image of a clean “layer stack” application (where each
software layer is built on top of another, and only vertical communication
is possible) seems to be unable to cope with the more fluid development
of web applications. As most modern Web3D systems are based on
JavaScript, it is really easy to jump over layers and to interface at
different levels to the various software components of the application.
Many of what we would call “application layers” directly interface
with the very bottom WebGL layer for some specific low-level function,
but simultaneously exploit multiple “supporting layers”, which may
themselves have cross-dependencies. It is quite common for WebGL
wrapping libraries to be designed in this way, allowing them to be used
as low-level libraries, but also as basic load-and-display applications.
This fluid development can make it difficult to categorize and restrict
a software component to a single category, and the resulting scheme
is somewhat more complex than a neat series of software layers only
communicating vertically.

The stratification proposed in Figure 4.2 tries to structure and
better represent the scenario introduced in Figure 4.1, enclosing the
attempts built over WebGL in three macro-groups (defined not only by
looking at the abstraction level of the solutions, but also considering
other key factors, such as their interactions, the capabilities provided,
coding needs, etc.):

LiB/LiB4++ Supporting libraries for the WebGL API (low level, cod-
ing is required). The notation covers the whole low-level scenario,
starting with basic libraries that do not provide high-level features,
like Lightgl.js [205], a bare-bones WebGL wrapper, abstracting

24

The version of record is available at: http://dx.doi.org/10.1561/0600000083

Feature-Based Characterization of Web3D Solutions

Figure 4.2: A layered representation of the software contributions used in Web3D
implementations, which aims to define a map characterizing the connections and
relations among the different solutions.

many code-intensive functionalities, and gradually working up
to more complete ones, like Frak Engine [2], a library providing
features for simplifying the creation of complex interactive 3D
applications, or Three.js [32], a multi-level APT allowing the de-
veloper to rely on a wide set of features, such as coding support
utilities, documentation, examples, tutorials, how-tos, etc.

TooL/TooLKIT/FRAMEWORK Middle-level solutions. To access We-

Aprp

bGL they often use one of the aforementioned libraries; usually
provide a graphical user interface (GUI); almost always require
a certain degree of coding. May range from simple tools to com-
plex frameworks. Besides the basic features, they can provide
the developer with higher-level functionality related to the 3D
scene (hotspots, user interfaces, analytical tools, etc.). Examples:
WebGLStudio [5, 4], a toolkit to create interactive 3D scenes di-
rectly from the browser; Clara.io [58, 79], a platform for modeling,
animating, and visualizing 3D content online.

Applications at the highest level, where authoring elements are
used and coding is not needed. Typically end products supporting

The version of record is available at: http://dx.doi.org/10.1561/0600000083

4.1. Which Categorization of the Existing Solutions? 25

Figure 4.3: Graphical representation of different layering possibilities adapted to
three real case studies. The diagrams show the interaction between (from left to
right): a basic library (Lightgl.js) and a middle-level solution (WebGL Studio); a
basic library (Frak Engine) and a high-level application (3D Wayfinder); a basic
library (Three.js), a middle-level solution (Clara.io), and a high-level application
(Pinshape).

online 3D publishing in the form of web services. Examples: 3D
Wayfinder [1], an architectural application offering ways to manage
content in 3D floor plans; Pinshape [124], a portal and marketplace
for the 3D printing community.

Although this layered scheme fits very well with a wide range of
reviewed cases (in Figure 4.3 we present just three graphical examples
describing some of the cited software), on closer analysis it turns out to
be not flexible enough to provide a complete characterization of all the
existing solutions. For instance, it fails to clearly classify “multi-level”
libraries (wrapping libraries providing, at the same time, very low-level
and very high-level access), or again to correctly identify solutions like
3D publishing standalone suites to download and install (end products
that act like middleware systems but at the same time provide very
low-level possibilities).

To accomplish our categorization, we therefore decided to propose
a different point of view: a systematic study of the features supported
by the state-of-the-art solutions, organized in a subset of macro-groups.
The reason for following a “per feature” review rather than presenting
the domain by listing and describing all solutions is also related to a
wish to promote a transverse analysis over the possibilities offered by
the main approaches. In this way, instead of producing a linear list

The version of record is available at: http://dx.doi.org/10.1561/0600000083

26 Feature-Based Characterization of Web3D Solutions

of libraries/tools/apps, we aim at obtaining a more useful comparison
of different philosophies and methodologies. Moreover, we also think
that this decision may be the most suitable in providing researchers,
developers, and final users with a full understanding of the breadth and
depth of each contribution developed for publishing 3D content on the
web.

4.2 Characterizing and Grouping Web3D Features

Characterizing the different approaches by their features means, first of
all, defining the atomic actions and functionalities needed for publishing
and interacting with 3D content online. With this aim, we have identified
a large set of characterizing features that should be able to satisfactorily
cover the possibilities provided, supported, or required by a Web3D
solution.

This set turned to be a long list of disparate aspects, including
features at different levels, for both implementation and usage:

e supported data types and associated representation schemes (3D
volume, particle systems, triangle based, etc.)

e publishing modalities (developer oriented, hybrid node based, for
naive users, etc.)

e scene creation and organization tools (hierarchical structures,
procedural definition, geometry instancing, etc.)

e hyperlink-based integration between 3D and other media (text,
images, etc.)

e data encoding and transmission schemes (LoD formats, progressive
streaming, view-dependent refinement, etc.)

e object/scene interaction paradigms provided (inspection vs navi-
gation)

e scene customization possibilities (shaders, materials, lighting maps,
etc.)

4.2.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

Characterizing and Grouping Web3D Features 27

supported input/output modalities (touch based, gesture based,
WebVR, etc.)

data pre-processing possibilities (client side vs server side)

supported publication aims (pure visualization, digital content
creation, etc.)

visual schemes for informative scene enrichment (HTML labels vs
clickable instances)

data IPR management modes (watermarking, grant permission,
access passwords, etc.)

scene-level interaction elements (toolbars, 2D maps, view cube,
etc.)

annotation/hotspot authoring tools (policies for implementation
and use, pros and cons)

scene animation support (camera animations vs model animations)

supported publishing experience (specialized analytical tools, dis-
tinctive interaction paradigms, community-aimed features, etc.)

data hosting costs (disk space footprint, payment fees, freemium
plans, etc.)

data storage and access protection (data encryption, data center
secure location, threat prevention, etc.)

distribution terms and costs (open source, freemium, commercial,
etc.).

Given the variety of the reported items, instead of building a hard-

to-read table full of footnotes, we decided to structure the discussion of

the following sections by grouping the listed features into a few sensible
macro-groups, related to their scope and usage. This harmonization

process allows us to define the following five groups (also schematized
in Figure 4.4):

The version of record is available at: http://dx.doi.org/10.1561/0600000083

28 Feature-Based Characterization of Web3D Solutions

PUBLICATION

:
., B,

”
CU B&
ggg g e: ?HDATA

=G
! 3 !

USER MEDIA
\lNTERACﬂON SCENE lNTEGRATION/

Figure 4.4: A graphical representation of the five macro-classes of features defined.
The proposed scheme covers the whole ecosystem of Web3D solutions, ranging from
low-level to higher-level functionalities.

Dara LEVEL Functionalities related to 3D data handling, including
the representation, processing, and transfer schemes adopted to
efficiently deploy and render 3D models. This level also introduces
higher-level policies for data management (hosting costs, storage
and access protection, IPR best practices).

SCENE LEVEL Functionalities needed to define a structured 3D scene
as a composition of a number of basic components (hierarchical
structures, geometry instancing, etc.), and to specify the proper-
ties of those components (e,g, scene animations). This level also
includes the possibilities of personalizing the scene appearance
(customizing shaders, lighting maps, etc.).

INTERACTION LEVEL Functionalities concerning tasks and paradigms
related to the final user interactions with the represented 3D
scene/object (inspection, navigation, etc.). This level also intro-
duces interfaces aimed at interactive exploration, and components
required to drive and manage specialized input devices and ad-
vanced output modalities.

The version of record is available at: http://dx.doi.org/10.1561/0600000083
4.2. Characterizing and Grouping Web3D Features 29

INTEGRATION LEVEL Functionalities implemented to provide a linking
logic between the 3D content and the other multimedia contents
present in a web page. This level investigates the trans-media
integration and embedding strategies (annotation and hotspot
schemes), as well as the possibilities of exploiting authoring tools
to make them easier to define.

PuBLICATION LEVEL Publishing functionalities analyzed at the higher
abstraction level. This level introduces features based on more
general concepts, like the kind of publication provided to content
creators (naive-user targeted, developer centric, etc.), the basic
publishing aim promoted (interactive visualization, collaborative
editing, etc.), the class of final experience supported (specialized
inspection/analysis, community sharing, etc.), or even the type of
use permitted (open source, commercial, etc.) and the associated
costs.

Obviously, each of these groups cannot be considered an absolutely
isolated container. The boundaries of these groups are fuzzy, and many
of the features discussed often exist only if strictly correlated with
characteristics listed in a different group of features. At the same time,
some other features could span more than one group. But, in the end,
this simple schema, considering five areas commonly shared by almost
all the Web3D solutions we analyzed, proved to be an effective way to
analyze the whole landscape of 3D content published online.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5

Analysis of the Features

In the previous chapter we introduced a per-feature presentation and
categorization approach. We have first listed a potential set of features
and then we established five macro-groups, to better organize the
discussion. The following sections discuss each of these macro-groups,
detailing their features and providing relevant examples on how the
same capability /issue has been addressed by different Web3D solutions
currently available.

5.1 Data Handling

To discuss the Web3D publishing features we follow a logical order,
starting from the innermost component of the Web3D tools and services,
which is the data level. Analyzing this level we will touch both low-
level features (data representation types, rendering techniques, transfer
schemes, pre-processing optimizations, etc.) and higher-level functional-
ities (storage policies, IPR protection, etc.).

Studying the Web3D context, the first thing that catches the eye is
the difficulty of managing the inherently complex data in a computa-
tionally poor environment, such as the web. Over time, this issue has led
to systems tailored to the specificity of the data to be managed, proving

30

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.1. Data Handling 31

that the data involved in the publishing process, and the related design
choices, play a central role in characterizing each Web3D solution.

So, content creators approaching Web3D publishing face a prelim-
inary basic characterization, strongly dependent on data types and
representation schemes. The visualization of different datasets requires
different data representation and rendering techniques, also influencing
the choice of the proper publishing channel.

For instance, volume visualization (very popular in medical applica-
tions, but also in geographic and meteorological visualizations) often
relies on volume ray-marching rendering algorithms, i.e. GPU-based
techniques that use textures for data storage—MEDX3DOM [42] and
X Toolkit [73, 212] are two examples of medical solutions adopting this
rendering approach). If, conversely, the aim is to visualize a particle
system, it would be preferable to use the ray-casting technique (another
GPU-based technique, that defines objects using implicit primitives,
and then generates their surface by computing ray—object intersections).
Examples that fruitfully exploit this approach can be found in the
biomedicine/molecular visualization domain, where atoms are approxi-
mated by spheres whose centers and radii are the parameters sent to
the GPU; examples include the systems by Mwalongo et al. [135] and
Chandler et al. [37].

Even though data-specific rendering techniques are frequent, recent
advances in web technologies (once again, JavaScript improvements
and WebGL availability) have made the t¢riangle-based approach more
and more efficient, making it the most widely used approach, not
only when “classical” mesh-based 3D models are involved, but also
extending this representation to the visualization of other types of data:
geospatial maps [89], city models [60], marine data [158], and many
others, including the very same volumetric 3D datasets [72] and particle
systems [160] mentioned previously.

However, despite the increase in performance due to the adoption of
GPU-enabled rendering solutions, the efficiency of the rendering system
remains tightly coupled with the intrinsic characteristics and granularity
of the data, thus maintaining the importance of a careful choice of data
representation and rendering strategy.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

32 Analysis of the Features

Strongly related to the adopted rendering techniques, data encoding
and transmission approaches provide another basic characterization of
Web3D systems. As already stated in Section 3.2, efficient data handling
is fundamental to interactive web visualization, mainly because, without
adequate data transfer performance, low bandwidth and latency issues
can lead to long waiting times until data is available to the browser.

As we have discussed, a number of algorithms have been formal-
ized specifically to address this bottleneck, mostly proposing transfer
formats able to support progressive streaming of simplified versions of
the handled 3D geometry, such us P3DW, derived from Lavoué et al.
[108, 109]; SRC, derived from Limper et al. [117]; or NXS, derived from
Ponchio and Dellepiane [151, 152].

A couple of examples of real Web3D approaches using these data
formats are the InstantReality [59] tool already mentioned in Section 3.1,
which uses the SRC format, and the 3DHOP framework [199, 154], a
specialized solution for publishing high-resolution cultural heritage 3D
content using the NXS format.

Some of those representation schemes also provide additional features
for the progressive rendering of LoD or multi-resolution encodings.
They may include network-oriented compression and decompression
algorithms, that ensure efficient decoding and rendering, rather than
only optimizing the compression ratio. This is exactly what happens,
for instance, in the WebGL-loader [68, 40], a solution developed in the
context of the Google Body project [23]: based on UTF-8 coding, delta
prediction, and GZIP, this produces a compression ratio of around five
bytes per triangle for encoding coordinates, connectivity, and normals.
Other optimizations related to progressive rendering techniques concern
the refinement criteria: they may be view dependent (refine the geometry
resolution depending on dynamic camera specifications) or based on
the system rendering load (provide a high-resolution representation for
more static visualizations, and a lower resolution for more demanding
computational conditions, as in the example presented in Figure 5.1).
The Nexus toolkit [198] for adaptive multi-resolution management of
3D models (both triangle and point clouds), which provides all these
features, is a perfect representative of these efficient and optimized
transmission and rendering schemes.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.1. Data Handling 33

Figure 5.1: Example of selective LoD rendering driven by animations or user
interactions in the ThreeKit [78] viewer, an online 3D configurator based on discrete
LoD layered models, built on the top of the Clara.io [58] viewer introduced in
Section 4.1. When the final user starts to interact with the model, the system
switches from a higher-resolution (left) to a lower-resolution (right) representation,
to keep pace with the more frequent image refresh rate required by the interactive
session.

Nowadays, almost all the main mesh-oriented web 3D viewers adopt
LoD /multi-resolution representation schemes (often developing propri-
etary transfer /streaming formats). Nevertheless, for specific cases where
the original coherence/precision of the 3D data is more important than
minimizing the download times, or when the kinds of primitives adopted
are difficult to simplify, single-resolution data representations are still
adopted.

Often, this strategy occurs in application contexts that exploit
computer-aided design (CAD) solutions for assisted 3D modeling and to
support production processes (this is common in fields like engineering,
architecture, and mechanical design). The reasons for employing single-
resolution models are various.

CAD-like tools often rely on the use of precise metric data, and this
conflicts with the LoD and multi-resolution geometries where the local
geometry is simplified with a loss of precision and, possibly, a change of
topology. Additionally, the modeling approach more common in these
domains is based on many independent components, each derived from
basic geometric primitives or modeled independently, which are then

The version of record is available at: http://dx.doi.org/10.1561/0600000083

34 Analysis of the Features

merged together. The resulting 3D mesh may present uneven triangula-
tion, intersecting elements, and issues related to a non-clean topology.
These geometries can be easily rendered without noticeable defects (e.g.
interpenetration is usually masked by the visible surface closer to the
viewer), but create a lot of problems when an incremental simplification
or LoD /multi-resolution construction algorithm is applied to them, due
to the topological issues. This often prevents the automatic creation of
coherent LoD /multi-resolution representations. Moreover, LoD /multi-
resolution structures are static and do not allow the modification of the
geometry /topology that is needed in these tools. Every time the mesh
is edited, the LoD /multi-resolution structure has to be reconstructed.
This introduces issues in efficiency (reconstruction is usually a complex
task) and in resources (the amount of data to be processed is very hard
to handle efficiently in a web browser, because of the limitations in the
browser cache memory). Again, the previously mentioned read/write
protection of web browsers represents an important hurdle for these
frequent and resource-expensive computations.

Consequently, Web3D systems devoted to online 3D modeling such
as Autodesk Tinkercad [12], a browser-based 3D modeling tool aimed at
3D printing, usually rely on single-resolution representations. This allows
the final user to edit the 3D model in real time and with full precision,
but also requires considerable data transmission/download throughput
and may slow down the interactivity. Even if the 3D geometries modeled
can be considered relatively simple (in terms of number of vertices and
triangles), they can easily reach sizes of the order of tens or hundreds of
megabytes, mostly because of the assets associated with these models
(textures, materials, etc.), but also because of the complexity of the
virtual scenes modeled (typically characterized by a high number of 3D
model instances).

It should be mentioned explicitly that adopting a single-resolution
geometry does not reduce the importance of employing (lossless) com-
pression and optimization strategies focused on minimizing the size of
the 3D data transmitted. Anyway, the limitations of these data formats
still affect the performance of Web3D CAD applications, especially
because they clash with the data management limitations typical of all
the main browsers (see Section 3.2).

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.1. Data Handling 35

However, despite the mentioned critical factors in adopting single-
resolution approaches and the related well-known issues [162], online
applications aimed at assisted 3D modeling are forced to rely on those
representations, mainly because they need to perform frequent dynamic
3D geometry editing actions, which conflicts with the usually relevant
processing times of high-quality LoD /multi-resolution construction al-
gorithms.

In fact, the main drawback with LoD /multi-resolution approaches
is that they require some heavy 3D data pre-processing before data
can be published on the web. Data pre-processing, however, is also
often necessary for non-mesh highly specialized viewers like the ones
mentioned at the beginning of this section, which, relying on highly
optimized and custom-tailored rendering, generally require data conver-
sion to specific optimized formats. This step can be performed locally
(on the client device), or remotely (usually on the server that hosts the
Web3D publishing service). Both approaches have pros and cons.

In client-side conversion the data optimization is performed on the
client, and thus the content creator needs to download and run additional
software to convert the 3D data into a layered or multi-resolution format.
Converting the data on the data-owner device prevents the need to
upload the often huge single-resolution 3D model—the progressive
encoding is usually compressed, and thus the final encoding is much
smaller than the original data file. The aforementioned 3DHOP [199]
framework adopts this approach.

In server-side conversion the data processing is instead run on
the server. In this case the whole single-resolution data file must be
uploaded, and usually no clues to the data conversion process are
provided. On the other hand, in choosing this approach the content
creators do not have to be aware of the technicalities, do not have to
bother ensuring availability of the required resources (memory space or
processing power), and do not have to install the required software tools
for data conversion. Therefore, this approach increases the perceived
degree of automation of the web publishing process. For these reasons
this latter option is typically preferred to the first one by end-products
that support online 3D publishing in the form of one-click publishing
services. Representative examples of solutions adopting this approach

The version of record is available at: http://dx.doi.org/10.1561/0600000083

36 Analysis of the Features

are the Visual Media Service [201, 153], a web service providing easy
online presentation of complex visual media assets (it converts data
to the multi-resolution Nexus open-source format), and the Sketchfab
platform [171] for community sharing of 3D models (it converts data to
a rendering-optimized and compressed proprietary representation).

However, especially if uncontrolled and undocumented (as is of-
ten the case in commercial systems), data conversion can affect data
integrity. This may be perceived as quality degradation and can repre-
sent a problem in some specialized application fields (such as medical
diagnostics data visualization and analysis).

The migration of 3D data toward web-friendly representation formats
(simplified and/or compressed) is fundamental when storage and data
transmission requirements are critical issues, as in the case of service-
oriented platforms. So, also considering the peculiarities of 3D data,
the cost of online models (measured by disk space footprint) can easily
become a relevant discriminant in the choice of the most appropriate
publishing approach. Usually, commercial Web3D platforms that offer
publishing space for sharing 3D creations propose freemium or payment
plans diversified on the required storage space or on the provided
rendering quality, e.g. PlayCanvas [54], a game engine for creating,
publishing, and sharing interactive 3D applications on the web. But disk
space and bandwidth efficiency are also central issues when working with
open-source solutions (which usually let the developer embed the 3D
viewer in a web page for free). In fact, in this case the server storage and
bandwidth resources are generally outsourced to an external fee-based
service.

The policies adopted for 3D data encoding have a potential impact
on another important Web3D feature, the IPR management issue.
Exploiting LoD /multi-resolution and view-dependent techniques may
represent not only an advantage in terms of performance, but also a
sort of implicit data protection. Since with these approaches the full
3D model is never sent for rendering in its entirety (in fact, Web3D
systems send to the client only model chunks customized for the current
view specifications), a fraudulent copy of the original data would need
more advanced methods (reverse engineering techniques). But when
LoD /multi-resolution is not needed and the 3D object used has a

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.2. Scene Setup 37

“plain” geometry, then IPR protection becomes a problem. This crucial
point, common to all media-hosting services, has in recent years also
become relevant in the Web3D world, driven by the explosion of sharing
platforms for 3D printing: Thingiverse [172], Shapeways [168], Threeding
[183], MyMiniFactory [137], etc. As stated in Section 3.3, IPR protection
of online 3D data is a hot topic for Web3D; 3D watermarking can be
a (partial?) solution, but the current approaches to building a defense
are often based on a set of progressive barriers. Many solutions try
to protect the uploaded content from unauthorized replication (by
other users), for example giving the opportunity to make published
material private (not indexed, or accessible only through temporary
links) or not downloadable. In some cases the adoption of proprietary
file formats (preferably LoD /multi-resolution, as we have seen), or the
use of password protection for every model, can add additional security
to the management of the uploaded 3D content. The ShareMy3D [9]
platform for publishing (and storing) 3D meshes online was an example
of system offering all these features (recently acquired by Cognite, this
platform is no longer available).

The characterization of the security policies of Web3D approaches
should also take into account the more general and higher-level area of
data storage and access protection (i.e. related to the cloud servers used).
Nowadays, such infrastructure should be compliant with specific ISO
standards for information management security (ISO/IEC 27001) and
able to provide a number of security mechanisms, including physical
data center secure locations (perimeter fencing, patrolled security guards,
biometric entry authentication, laser beam intrusion detection, etc.),
data encryption (automatic encryption under the 256-bit Advanced
Encryption Standard, regularly rotated set of master keys, etc.), and
threat prevention (uninterruptible power and backup systems, fire/flood
detection and prevention, etc.). However, an in-depth discussion of these
last points is outside the scope of this survey.

5.2 Scene Setup

In Section 5.1 we analyzed the core features of 3D data management.
But what is presented to the user is often not just a single 3D model,

The version of record is available at: http://dx.doi.org/10.1561/0600000083

38 Analysis of the Features

but a more complex set of entities. Consequently, most 3D viewers rely
on the concept of a 3D scene. A scene is basically a “container” defined
in three-dimensional space, used by the 3D application to arrange all the
entities that are needed to represent, manage, display, and interact with
a three-dimensional environment. To this extent, it may be considered
the atomic unit of a 3D publishing project. A scene contains one or
more 3D entities (mesh models, but also particle systems, impostors,
volumetric data), arranged in a reference space, plus all their related
assets (textures, materials, shaders, animations), but also contains all
the entities used to compute their appearance (such as lights), one or
more cameras (the point of view of the user), and all the other 2D and
non-dimensional entities used for interaction and rendering.

This section presents the 3D scene setup possibilities provided by the
various Web3D approaches, including scene appearance (color, reflec-
tivity, transparency, etc.), logical and spatial organizational structures,
composition customizations, etc. Many applications require a 3D scene
to be organized into some kind of hierarchal structure, which is used
to arrange the different elements of the scene in a particular spatial or
logical disposition.

Scene graphs are the most popular among this kind of structure: they
organize the scene as a complex graph that includes all the elements of
the scene as a set of nodes, possibly resembling an identifiable rooted
tree. Scene graph approaches are frequently used in 3D rendering engines,
and are generally based on a logical, rather than spatial, arrangement
of the data nodes. Many scene graphs also provide geometry instancing:
a system in which the scene graph nodes represent entities or objects in
the scene that refer to a single copy of the data (made up of a 3D mesh,
textures, materials, etc.) kept in memory just once. This allows the
memory budget to be reduced and the rendering speed increased, but
also facilitates the organization and management of physical interactions,
collision detection, and large-scale animations. For these reasons, scene
graphs are particularly useful in managing increasingly complex 3D
scenes, such as those of modern 3D games.

Although there exist specific libraries [e.g. OSGJS: 150] developed
to port the scene graph concept in WebGL, nowadays many Web3D
approaches are based on proprietary inbuilt scene graph managers. This

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.2. Scene Setup 39

tendency follows the idea expressed in the previous chapter of tailoring
the data management to the specific characteristics of the target data
and the specific application, sacrificing generality for more efficiency.
Examples of solutions adopting this approach are ScenelJS [97], an
open-source low-level scene-graph-based engine for 3D visualization,
or, at a higher level, the already mentioned Unity3D [191] engine (a
freemium multi-platform authoring tool, initially designed for 3D games
but currently used for general purpose interactive 3D creations and
installations).

However, scene graphs are not the only strategy followed in the
Web3D environment and, in some specific situations, these logical hi-
erarchal structures may also complicate the content creator’s life, for
instance enforcing a higher level of hierarchy when instead a much finer
or spatially aware level of control over the execution flow is needed.
Therefore, some solutions, such as the already introduced Lightgl.js
[205] or Stackgl [177], a WebGL software ecosystem inspired by the
Unix philosophy, do not explicitly provide a scene graph, and give the
content creator the freedom to build it on top of a basic functionality
layer, just like the previously mentioned WebGLStudio [4] system does,
featuring scene graphs despite being based on Lightgl.js.

A frequent alternative to the support of the scene graph concept
is to enable the procedural definition of the 3D scene. This approach
exposes several fundamental components, combined in a procedural
way to form more complex entities. Solutions adopting this composition
scheme (which also includes a geometry instancing system) provide a
more flexible way to create content-rich scenes and represent 3D objects,
offering a performance-oriented data structure that can be effectively
used in applied research or algorithm prototyping. An excellent example
of this kind of approach are those systems in which the goal is not to
present a large 3D scene, but rather to find a way to visualize efficiently
very complex 3D data, such as the Potree system [164], an open-source
viewer for large point clouds, that uses multi-resolution octree-based
algorithms for displaying at interactive rates enormous unprocessed 3D
point clouds.

A structured 3D scene can also include the definition of the visual
representation appearance of its 3D content and, in some cases, it may

The version of record is available at: http://dx.doi.org/10.1561/0600000083

40 Analysis of the Features

also allow for complete run-time control of the rendering appearance
at object or scene level. It may be argued that, in some contexts, the
appearance (material, texture, shader) should be considered part of the
3D model data. However, more often than not, in Web3D applications
the shaders, materials, and textures are assets that are associated with
the 3D model only at the level of the scene, and mostly at publishing
time; moreover, the possibility of changing the rendering appearance
of the scene elements in real-time is certainly scene-level functionality.
This “soft” link between 3D data and appearance certainly derives from
the nature of the WebGL rendering pipeline, which is completely based
on shaders.

Customization of the 3D scene representation appearance involves
the ability of a Web3D solution to modify the GPU rendering pipeline,
personalizing the adopted shaders, materials (mapping enhancements
that allow objects to simulate various types of realistic materials), and
lighting maps (techniques used to create different rendering effects by
defining different types of light sources).

For web publishing software, the more this rendering stage is pro-
grammable/configurable, the easier it is to achieve complex visual effects,
at the cost of requiring a much deeper knowledge of rendering concepts
from the content creator (shifting the emphasis from web programming
to CG programming expertise).

Some Web3D solutions provide a complete set of customizable
parameters, comparable to the classic standalone 3D creation suites.
BabylonJS [34], a relatively new open-source JavaScript/TypeScript
3D engine oriented toward game design, is a good example of this. It
allows developers to fully personalize the rendering/shading process
by creating custom shaders, materials, and lighting, and providing
explicit features to set diffuse, ambient, and specular lightning, as well
as opacity, reflection, mirror, emissive, specular, bump, and lightmap
textures, unlimited lights (points, directional, spots, hemispheric), the
Fresnel term for diffuse, opacity, emissive, and reflection, etc.

In these kinds of solutions, usually the setup of the 3D scene ap-
pearance is defined simultaneously with the geometrical scene definition.
Some other Web3D applications also provide the possibility to change
the initial settings in real time during the visualization, using external

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.2. Scene Setup 41

Figure 5.2: Four rendering possibilities provided by Autodesk ReMake [14]. In
clockwise order starting from the upper left: textured, solid, wireframe, and X-ray
mode. Interacting with the viewer controls, the final user can select in real time to
visualize one of these options.

variables or textures for modifying the algorithms defined in the shaders.
Obviously, in this case the set of actions allowed to the final user is
considerably smaller than in the previous case.

The already mentioned Sketchfab [171] publishing platform offers
the possibility to choose between a few predefined shading methods,
each one with a series of customizable parameters. The content creator,
at upload time, besides configuring the optimal shading method for
their 3D model, may also choose which method and parameters will be
available to the content consumers when exploring the scene/object.

Conversely, the Smithsonian X3D [173] viewer (developed by Au-
todesk for this cultural institution) has a single shading pipeline but
offers to the final user a lot of real-time-editable shading parameters,
material properties, and control over multiple light positions and colors.

ReMake [14], again by Autodesk, an end-to-end solution for creating
(offline) and publishing (online) 3D scenes, provides a single shading
method, and only offers the chance to switch on the fly between a
predefined set of rendering modes (see Figure 5.2).

As stated above, a 3D scene also contains the specifications for a
viewpoint or camera. This element is not only important for rendering

The version of record is available at: http://dx.doi.org/10.1561/0600000083

42 Analysis of the Features

the scene, but also to specify other characterizing features such as
camera animations. These may be simple predefined views, smooth
view interpolation between predefined positions, or precomputed camera
paths. Even if this kind of animation seems to be relatively simple
(when compared with complex or large-scale animations of the 3D scene
objects), they transform a simple 3D viewer into an effective publishing
tool. Thanks to their simplicity and high effectiveness, they are provided
by many systems. The availability of this feature allows the creation of
bookmarked views or points of interest (POIs) inside the 3D scene. These
predefined views can be linked to other web media/components outside
the canvas element, or also interconnected in a smooth, animated, and
immersive view path inside the 3D scene: the Archilogic [10] platform
(focused on 3D architecture and interior design) provides a functional
implementation of this kind of guided presentation.

Of course, cameras are not the only animation that is available as an
asset in a 3D scene, and the more complete platforms (particularly those
oriented toward gaming) provide to the users features to animate all the
elements in the scene. An exhaustive review of animation possibilities
on the web was recently presented by Ahire et al. [6]. However, for
the sake of conciseness, the main approaches to 3D online publishing
(such as the Sketchfab platform) support just the following animation
modalities:

o skeleton-based: the skinned 3D surface of the model is connected
to an animated multi-joint structure, generally used for character
animations;

e rigid: animate model translation, rotation, and scale, generally
used for mechanical animations;

e morph to target: morph shapes from one state to another, generally
used for facial animations.

The availability of camera and object animations is a fundamental
requirement when evaluating different Web3D solutions, because by
means of these features the content creator can cross the borders of
the 3D rendering container, introducing elements of digital storytelling

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.3. User Interaction 43

EXPERIENCE
CURIOSITY

Figure 5.3: The interactive 3D web application developed by NASA using exclu-
sively open-source software (including the commercially licensed Blend4Web). This
application was released in 2015 to celebrate the third anniversary of the Curiosity
rover landing on Mars. The end user can control both the rover and the camera,
driving the rover across the bookmarked views placed on the virtual scene (for
example, marker number 3 in the figure).

and moving the published content toward an interactive and integrated
experience. “Experience Curiosity” [138], a serious 3D online game
shown in Figure 5.3, is a brilliant and simple storytelling example
achieved by combining camera and 3D model animations; developed
by NASA’s Jet Propulsion Laboratory using the Blend4Web [186]
publishing solution, it was successfully presented at the WebGL session
at SIGGRAPH 2015 [102].

5.3 User Interaction

Strongly connected to the scene, the interaction level is one of the most
characteristic features of a Web3D solution. While the features at this
level may be tailored to specific types of 3D data/content/application,
we can also envision in this case some common elements and some
characterizing features. User interaction in a Web3D solution happens
at different levels. It includes features supporting interaction paradigms
that work at object or scene level (trackballs, first-person controllers,
manipulators, etc.), but it is also present as interface elements focused

The version of record is available at: http://dx.doi.org/10.1561/0600000083

44 Analysis of the Features

on the interaction between the web page and the 3D layer (toolbars,
hypertext-based functions, etc.), or it may even concern the interaction
of the Web3D environment with novel technologies and input/output
devices (touch surfaces, VR devices, gyro sensors, etc.).

Interaction with 3D Content

In the last two decades, several research groups have studied effective
interaction with 3D objects or scenes [74, 25, 26, 86, 87], leading to
design approaches able to cover most of the relevant combinations
of data and application fields. Nowadays, many of these interaction
approaches have been transposed online, implemented in the various
available Web3D solutions.

The interaction in a 3D environment can be characterized in terms
of universal interaction tasks: the process of getting around a vir-
tual environment is one of these. In the variety of existing interaction
paradigms deriving from this task, exploration approaches addressing
general movements are the most exploited. In particular, two main
exploration techniques are widely supported in 3D web systems:

e interactive inspection (rotate/pan/zoom), where the user interac-
tion moves the object/scene in front of the camera;

e interactive navigation (walking/driving/flying), where the user
moves the camera through the scene.

This dichotomy is often called world in hand (WIH) vs camera in hand
(CHI) [206, 61].

Interactive inspection Rotating, panning, and zooming are the basic
view movements, used in almost every 3D software. These operations,
applicable at object level and at scene level, are also extremely common
in the Web3D world because, being easy to map to two-dimensional
operations, they work well with common pointing devices (such as a
mouse). This paradigm generally implements the concept of a virtual
sphere containing the object to be manipulated, also known as a trackball,
a seminal technique designed for moving 3D objects around, based on

the Chen et al. [38] Virtual Sphere and the Shoemake [170] ArcBall.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.3. User Interaction 45

This interaction method is perfect for solutions aimed at the inspec-
tion of a single object or of simple scenes—like the viewer developed by
University College, London for the 3D Petrie Museum [192] project—
where the object/scene can be fully explored with the camera from the
outside, looking toward a center of interest.

On the top of this basic behavior, it is possible to implement more
sophisticated and customized interactive inspection modes, perhaps
directly related to the characteristics of the object to be inspected, or to
the application field. The 3D web viewer developed, for instance, in the
Visionary Cross Project [196, 112], an international cross-disciplinary
project aimed at exploiting recent developments in digital humanities to
study a key group of Anglo-Saxon texts and monuments, adopts a spe-
cific trackball that allows the inspection of an elongated object present
in the virtual scene only through constrained panning movements.

However, despite most systems providing an interpretation of the
virtual sphere, a standardization of its components is still missing.
In fact, in moving from one 3D-enabled application to another the
behavior of the trackball does not usually match, and small details
(such as key/button mapping or inertia) are often different.

Interactive navigation On the other hand, when the scene or the
3D model represents a 3D environment, it may be useful to let the
camera viewpoint travel inside the scene, bringing the point of view
to relevant and natural positions. Therefore, the other common ap-
proach for allowing the end user to navigate a 3D environment is the
walking/driving /flying paradigm.

One interpretation of this approach, directly derived from the
videogame development world, corresponds to first-person perspective
(FPP) navigation, in which the view position of the player is usually
controlled with arrow keys (for this reason, it is also known as the
WASD paradigm) and the view direction is controlled with the mouse.
This is implemented by all the game-oriented Web3D solutions, like
the previously introduced PlayCanvas [54], but despite being versatile
and powerful, it requires multiple simultaneous inputs, and it is often
deemed too complex for some classes of users.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

46 Analysis of the Features

Considering that these interaction paradigms are highly specialized
on the handled dataset, and on the experience that the publication
wants to convey, from the beginning of Web3D multiple options have
been provided by the various solutions. As an example, VRML [157]
already provided the possibility to set the navigation node (the element
containing information describing the physical characteristics of the
viewer’s avatar and viewing model) with at least four different types
of user interactions: “WALK” (interactive navigation with gravity),
“EXAMINE” (interactive inspection), “FLY” (interactive navigation
without gravity), and “NONE” (interactions disabled, system in guided
tour mode).

Interactive inspection and navigation modalities are widely distributed
because of their effectiveness for general cases, but many other more
specialized paradigms are available on the web. For example, 3D map
software, like the popular Google Earth application [66], usually provides
POI logarithmic movement (a targeted interaction for smooth shifting,
also known as go-to/fly-to), while CAD systems and 3D editing software
like WebGLStudio [4] generally use specified coordinates (x,y, z points
supplied by the user via dialog boxes, or other kinds of 2D interface)
for both position and orientation displacement.

Specific coordinate movements are also the basis for the selection
and manipulation task, an interaction technique different from the ap-
proaches presented so far, consisting in choosing an object and specifying
its position, orientation, and scale through explicit and direct transla-
tion, rotation, and scaling tools, called manipulators [18, 139, 43, 179].
Especially used during scene construction in 3D modeling software like
Autodesk Maya [11] and game development environments like Unity3D
[191], this paradigm results in very efficient designs of 3D scenes with
multiple objects, in which users have to repeatedly realign and adjust
different parts. Nowadays the implementation of this manipulation
technique almost always relies on visible graphic representations of the
operations on (or the state of) an object displayed with the 3D model
and able to control it via user interactions [180].

Interaction with 3D content may also happen on another level,
i.e. characterizing the system through the application/system control

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.3. User Interaction 47

task, which describes the interactions in a virtual environment in terms
of communication between a user and a system, which is not part
of the virtual environment. This technique, widely exploited in 2D
“point-and-click” WIMP (windows, icons, menus, pointer) graphical
user interfaces, has also been adapted to 3D applications, where control
interface components are placed in a conventional 2D interface presented
in screen space on a 2D plane called a HUD (head-up display). This
WIMP application control approach splits the interface into two parts
with very different interaction metaphors, since the navigation and
manipulation functionality is accessible through the 3D scene while the
rest of the environmental controls can only be interacted with through
the screen space interface overlaying, or side-by-side with, the 3D scene.

While the variety of all these possibilities is a strength, it makes the
learning curve steeper for more naive users, who usually find it difficult
to manipulate and interact with 3D environments. Quite often, this is
the result of a user interface that is not properly designed, and is unable
to efficiently associate these paradigms with the represented scene, or is
unable to conform the interaction to what is expected in the publishing
target ecosystem.

Web-Based Interfaces

In an ideal world, the selection of the best interaction mode should be
tightly connected with the 3D content handled and with the publishing
purpose. In a Web3D system, however, it should also be tailored to
the characteristics of the web, possibly adopting techniques that are
optimal for the hypertext-based web interface.

From a research point of view, and focusing on the more recent
years, Jankowski has probably been the most active in trying to bring
together hypertext technology and interactive 3D graphics. He aimed at
clarifying some of the foundations of 3D web user interface design [83],
focusing on an understanding of the fundamental tasks users may be
engaged in while interacting with web-based 3D virtual environments,
and then introducing his interface management approach. His work
proposes a dual-mode user interface [84, 85] that follows the usual
hypertext-based interaction mode, with the 3D scene embedded in the

The version of record is available at: http://dx.doi.org/10.1561/0600000083

48 Analysis of the Features

hypertext, but also exploits an immersive 3D mode, which moves the
hypertextual references directly into the 3D scene.

Indeed, although hypertext-based web interfaces are optimal in
linking together web and 3D (implementing a step toward the essential
integration between 3D and other media, as we will see in Section 5.4),
in some situations they may not be enough to provide full interaction
with the 3D scene. In these cases toolbars and other clickable graphical
commands/elements/buttons immersed in the virtual scene (or, as we
have already seen, superimposed in screen space) are a practical solution.
This is nowadays provided by a large number of systems: Autodesk
Tinkercad [12], Clara.io [58], Archilogic [10], etc. They usually make
available a set of actions to help interactions with the 3D scene, orienting
the user in using the adopted exploration paradigm (without preventing
the joint exploitation of the hypertextual approach).

Two representative examples of this class of additional elements
that enable improved interaction are overview-plus-detail components
(allowing simultaneous display of an overview and a detailed view of an
informative space) and orientation widgets (which help to address the
problem of disorientation, especially in WIH interfaces). Both of these
are supported and exploited in a good number of Web3D solutions.

Two-dimensional minimaps are a good example of the first group
of overview-plus-detail elements. Often superimposed in a corner of
3D viewers to provide interactive visualization of a planar dataset
(terrains, floor plans, geographical systems, etc.), these alternative
media support easier transitions between different locations of interest,
providing improved self-localization of the user in the space represented;
see the Potree [164] example in Figure 5.4.

An example of an orientation widget could be the 3D ViewCube
element. Introduced by Khan et al. [98], this cube-shaped component is
both an orientation indicator and a controller, and is generally placed in
a corner of the scene window; the Smithsonian X3D [173] is an example
of a 3D web viewer using this interface component (see Figure 5.5).

Additional interface elements like these can be also exploited by
Web3D solutions to develop and provide specialized features addressed
to specific application domains, some of which often require more
technical or analytical presentation tools. A system designed to present

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.3. User Interaction 49

[T p———

Figure 5.4: The Potree [164] basic viewer showing a running example of a 2D
minimap (in the top left corner of the image). This additional interface element
is useful to georeference the 3D model, but also to provide visual feedback of the
camera (represented by the triangle shape in the map) position and orientation in the
virtual space. Minimap elements refresh their position every time the user interacts
with the 3D scene.

#% Smithsonian X3D**

Amelia Earhart’s Flight Suit -

Figure 5.5: Smithsonian X3D [173] is an example of a 3D web viewer using the
ViewCube interface component (in this case presented at the top right corner of
the 3D rendering window). The 3D cube widget rotates synchronously with the
3D model; it has the primary purpose of providing the user with feedback on the
orientation of the 3D scene. The component can also be used to directly drive the
scene interactions (by rotating the 3D cube, the user applies a corresponding rotation
to the 3D scene).

The version of record is available at: http://dx.doi.org/10.1561/0600000083

50 Analysis of the Features

cultural heritage 3D artefacts, for instance, usually needs features able
to support annotations and metadata, as, for example, in the Aton front-
end software [195], or even technical measurements and visualization of
sections like those provided by the aforementioned Smithsonian X3D
platform [173] or the 3DHOP framework [199]. A solution addressing
the handling of 3D chemical structures instead, for example, should
possibly provide tools for visualizing vibrations, orbitals, schematic
shapes, and symmetry operations, as well as features for assisting the
management of molecules, crystals, and materials—as in JSmol [90], a
browser-based biomedical viewer.

A general issue with these screen space controllers is often related
to the user immersion in the 3D context [74]. Indeed, requiring a switch
from interacting directly with 3D objects to indirectly interacting with
them, these interfaces may easily lead to loss of user engagement (a
relevant problem in more immersive 3D applications). To overcome
the “cognitive distance” due to mapping 3D tasks and 2D control
widgets in a 3D space, van Dam [194] introduced new user interfaces,
not dependent on classical 2D widgets such as menus and icons, called
“post-WIMP,” which in recent years have also reached the Web3D
world [19]. These interaction techniques strongly rely on the latest
input/output (I/O) devices and technologies such as gesture and speech
recognition, eye/head/body tracking, etc.

Specialized 1/0 Devices

Modern 3D web environments exploit common general-purpose hard-
ware devices like the mouse and the keyboard to support user interaction,
but also more recent input/output technologies, like touch or multi-touch
input surfaces. The extremely rapid market penetration of the latter
devices through the widespread diffusion of smartphones and tablets, is
redefining the way people interact with digital content. Now, thanks to
the last generation of mobile devices equipped with browsers supporting
WebGL, this technological evolution is also beginning to involve the 3D
medium.

Nevertheless, most of the interaction methods in the Web3D envi-
ronment derive from (older) PC interfaces. For this reason they are

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.3. User Interaction 51

undergoing a radical redesign process [121] in order to also enable touch-
based input devices. However, if it is true that these novel technologies
open up new possibilities, they also lead to new challenges and issues.

For instance, touch inputs favor direct and fast interaction with the
manipulated content, but at the same time introduce some constraints:
with respect to a mouse and keyboard, they are much less expressive
(even considering gestures, they are a long way from the multiple keys
and modifiers of the traditional input devices) and have lower precision
(mouse positioning can be pixel perfect; finger touch cannot). Moreover,
they also require creating versions of the source code to enable switching
between multiple input/output device configurations, which is an open
issue particularly relevant for systems, like Web3D software, required to
operate on very different hardware platforms; the Seo et al. [167] work
with super multi-view autostereoscopic displays is confirmation of that.

Nevertheless, touch-based systems represent just the tip of the ice-
berg of new I/O technologies, especially considering the increasing
number of novel devices, sometimes specifically designed for 3D ap-
plications, that are making it practically mandatory to redefine the
obsolete WIMP paradigm. Among these, there are new devices sup-
porting gesture-based interfaces by means of fingers, hands, or body
motions, which often do not require touch contact to generate input
signals, or devices for enabling immersive virtual and augmented reality,
or again devices providing access to the wide set of sensors (gyros,
accelerometers, etc.) available nowadays.

All these new I/O methods, after being successfully tested in research
applications—like Wingrave et al. [209], which presents techniques for
exploiting the motion-sensing capabilities of a console controller, the Nin-
tendo Wiimote, to enable a 3D user interface—and standalone devices—
like Gravity Sketch [70], a 3D creation tool focused on mobile and VR
platforms that offers an innovative and intuitive design experience—are
now arriving on the web with device-mapping JavaScript libraries. A
brilliant example of that can be found in Kwan [107], which describes
how to use the Leap Motion device [30], a low-cost commercial hard-
ware device supporting hand/finger tracking, inside the Three.js [32]
ecosystem.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

52 Analysis of the Features

Among these libraries, a good number are still working at the
level of a draft specification for the web. This is the case for the
DeviceOrientation [132] and DeviceMotion [131] event handlers for
accessing orientation and motion sensors directly within the browser,
or for the WebVR API [133] for providing support in generating stereo-
pair images (two offset images that combine in the brain to give the
perception of 3D depth) for virtual reality devices like the Oculus Rift
[142] and HT'C Vive [80] head-mounted displays.

However, despite that, the chance to exploit new devices and 1/0O
methodologies has been taken by several platforms, and it is not unusual
today to have access to Web3D implementations able to support them.
Some examples are Patches [202], an online programming node-based
editor expressly designed for building WebVR experiences, or Parallax
[184], a cross-platform Java 3D software development kit (SDK) that
provides in its demo the possibility to switch between several different
3D effects: anaglyph, which encodes each eye’s image with filters of
different colors to allow perception of a three-dimensional scene by
composition), parallax barrier, which consists of a series of spaced slits
allowing each eye to see a different set of pixels to create a sense of
depth through parallax, and the already mentioned stereo pairs.

5.4 Multimedia Integration

Over the years many initiatives approached the integration of 3D data in
the standard web publishing ecosystem. Several of them failed to reach
their goal, mostly because they were focused on managing 3D content
alone, keeping it isolated from other multimedia layers. Nowadays,
people working on 3D data online are aware of the need for complete
integration of the 3D content in the web environment. Consequently,
they are also aware of the importance of establishing bidirectional
channels able to logically and functionally link the 3D layer with the
other media typically composing a web page. Following this idea, this
section will describe all the features aimed at transforming a simple
embedding of 3D data online in a real integration of 3D content on
the web, discussing and comparing the strategies adopted by some

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.4. Multimedia Integration 53

pioneering Web3D solutions to breach the HTML CANVAS borders
like, for instance, hotspot deployment, annotation possibilities, etc.

In designing a web page it is possible to simply spatially arrange
the various media inside it, but this would be a very limited and trivial
take on the “multimedia” approach. While the arrangement of more
classical media like text and images is fluid and shaped by the analogy
with the composition/layout of a physical page, less static media like
videos and 3D are often enclosed in rigid boundaries (or on dedicated
single-page viewers). In particular, the integration of 3D is problematic,
because the view area represents a window over a 3D space, while the
rest of the web page has a 2D nature.

A way to effectively connect the different media on the page is to
try to exploit hypertextual links to connect them, thus achieving a
trans-media storytelling behavior. Hyperlinks can be considered the
game-changing component of the web, able both to transform a linear
and passive supply of information in an interactive navigation and to
convert from spatial to logical the relationship between the elements on
the page.

To enable this vision, a Web3D viewer should define a set of elements
that may be useful to connect its components, events, and states with
the rest of the web page, to provide the following, for instance.

e A 3D analog of a hypertextual link (e.g. a clickable geometry,
a shape, or a marker) visible/highlighted in the 3D scene, that
should be easily visually identified by the user.

e A series of exposed functions able to change the state of the
viewer (e.g. a change_model_visibility() method, to modify
the visibility of an object in the 3D scene). These functions may be
called by other components of the web page to drive view/camera
controls (maybe using the camera animations introduced in Sec-
tion 5.2), data behavior, visual appearance, etc.

e A series of exposed functions able to read the current state of the
viewer, or access some of its data (e.g. an is_model_visible()
method, to read the visibility information of an object in the
3D scene). These functions may be used by other parts of the

The version of record is available at: http://dx.doi.org/10.1561/0600000083

54 Analysis of the Features

web page to display 3D information contained (or created) in the
viewer.

e A series of function hooks to track the events generated by
the viewer (e.g. an on_change_model_visibility() method, to
check if an object in the 3D scene changes its visibility state).

Through these elements a publishing system can make available dif-
ferent strategies to integrate 3D and web content, for example proposing
hyperlink-based schemes that let the web page manage the 3D scene from
outside the CANVAS. Exploiting this technique, the aforementioned
functions would be called by HTML elements, making it possible to
control the viewer behavior or composition from the web page content.
For instance, in the case of a single-model 3D scene associated with
external textual information, it could be possible to connect the action
of clicking a text area that describes a detail of the presented 3D element
to a change in the position of the element, with the aim of showing the
detail described. Or again, in case of a 3D model gallery published in a
web page also containing pictures of these models, it may be possible to
link a mouse-over event, triggered when the mouse pointer enters one of
these pictures, to the retrieval of the related 3D model from the gallery.
Among the solutions allowing this level of multimedia integration are
two previously introduced systems, 3DHOP [199] and the discontinued
ShareMy3D [9]. This strategy relies on a basic set of JavaScript func-
tions to drive the 3D scene through web page components external to
the CANVAS area. But obviously, this kind of hyperlink-based scheme
is not the only way to integrate 3D content and other media in a web
page.

Nowadays, the dominant approach, an alternative to the one previ-
ously presented, pursues an inverse path. It consists in bringing the other
media into the 3D scene, rather than migrating the viewer commands
outside of it. This technique makes use of the Web3D immersive inter-
faces introduced in Section 5.3, designed to embed or to superimpose
graphical elements directly as floating elements in the 3D scene. As
stated by Jankowski and Decker [84], in these interfaces 3D graphics are
the main information carrier, able to provide to the content-consumer

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.4. Multimedia Integration 55

both the freedom to navigate the 3D environment and the hypertextual-
like data (directly immersed in it).

The implementation of this approach for multimedia integration
relies on the possibility of attaching, at the scene level, information to
the 3D environment and 3D objects. This mechanism is the basis of
annotation/hotspot systems, features currently offered by many Web3D
solutions such as A-Frame [130], BabylonJS [34], Blend4Web [186],
PlayCanvas [54], etc. These systems provide notes to “stick” on 3D
models, useful for adding information to a specific part (see Figure 5.6).
Each note usually has a position, a camera position, a title, some
multimedia content, and, sometimes, also an order in a numerical list.
Users can view the attached information by interactively recalling these
notes during navigation. In response to this action, the additional content
is presented (typically in screen space) adjacent to the associated object.

The connection between multimedia data and a 3D scene can be
achieved by adopting different strategies. One of these consists in placing
in the 3D environment labels (or other hyperlink-based 2D elements)
connected to objects of interest via placeholders (usually anchors to
specific 3D points in scene space). Generally these clickable compo-
nents are HTML (or HTML derived). This allows Web3D solutions to
exploit, without much effort, the native interaction methods provided
by the markup language. Another possibility is to transform the 3D
objects in the scene into clickable instances. This strategy does not
need placeholders, but to drive the user interaction it requires that
the 3D system provides a set of event handlers specifically related to
the 3D environment (this feature is usually only provided by the more
complete Web3D solutions). Implementations of the labels and click-
able instances approaches can be respectively found in Cl3ver [82], a
software-as-a-service (SaaS) application to edit and display 3D content
online (see Figure 5.6), and WhitestormJS [31], a JavaScript framework
for simplifying 3D web publication deployment—it adds physics and
post-effects to the Three.js [32] technology.

One of the biggest weak points of the multimedia integration meth-
ods introduced in this section concerns their usability, intended as ease
of setup in the publishing stage. All the methods presented require
the content creator to spend a significant amount of time and effort in

The version of record is available at: http://dx.doi.org/10.1561/0600000083

56 Analysis of the Features

B.3VER Car Configurator B1.3VER Car Configurator
iy
D

Figure 5.6: Multimedia integration via an annotation system in the Cl3ver solution
[82]. In this example, clicking on the circular 2D graphical placeholder anchored
to a specific 3D point in the scene space (left) presents the user with additional
information in screen space as a superimposed HTML element (right).

uploading, linking, and configuring the additional layers of information.
While this may not be a problem for a professional content creator, a
casual one may find this work overwhelming.

Many systems, in an attempt to allow the coexistence of multi-
media integration and democratization of use (both pillars of modern
Web3D), have resorted to specific authoring tools, able to interactively
guide the connections between 3D and other media step by step. This
approach seems to meet the intent perfectly, and has been fruitfully
implemented by systems like the already mentioned Autodesk ReMake
[14] or Sketchfab [171]. In these solutions the authoring tool covers all
the areas related to web publishing. However, the implementation and
maintenance of an authoring system are cumbersome tasks, and require
a server infrastructure able to run them, narrowing the feasibility of
this approach to the solutions deployed as services (or, alternatively, to
standalone offline software equipped with a wizard).

How to support these needs remains an open issue for all the other
self-publishing or serverless approaches. More generally, the overall
informative enrichment of the 3D layer is still today a very active
research field. Indeed, in recent years, several works have been addressed

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.5. Publishing Context 57

at improving the technology behind interconnection systems between
3D and other media (not always specifically aimed at the web world).
Russell et al. [161], for instance, have explored the possibilities provided
by automatic annotations; Lehmann and Déllner [111] have tried to
increase the potentiality of labeling 3D content in virtual worlds (not
necessarily online); while more recently Seo et al. [166] have proposed a
method to enhance the perception of annotations by rendering them
with a 3D layout context and a camera perspective common to the
related object.

5.5 Publishing Context

The characterization discussed so far has been based mostly on specific
technical choices of the visualization system, considering the published
data as the core of the Web3D environment. Nevertheless, to get a
complete overview of the ecosystem it is necessary to take a step back-
ward, and to look at the online publishing phase. This section addresses
the main aspects of the publication process, including the publication
modalities available (target coding, node-based, full graphical user in-
terface, etc.); the primary purposes supported by the publishing (pure
visualization, assisted content creation, collaborative editing, etc.); the
kind of final experience promoted (specialized analysis, interactive pre-
sentation, social sharing, etc.); and the type of licenses adopted and the
resulting permitted uses (open source, commercial, freemium, etc.).

One of the preliminary discriminating points of the 3D web publish-
ing process is related to the target content creator expertise level. This
results in some software systems addressed at naive users and others
designed for skilled developers. At publishing time, it is possible to
choose between different development styles, ranging from pure coding
proposals to node-based editing and block programming, until arriving
to full GUI/wizard approaches.

The list of systems where the viewer is created by coding includes
a wide set of software, like for instance MathBox [210], a library for
rendering presentation-quality mathematical diagrams in the browser,
or LayaAir [39], a dedicated open-source API for games and multimedia
routine modules. These tools are usually aimed at developing more

The version of record is available at: http://dx.doi.org/10.1561/0600000083

58 Analysis of the Features

complex or highly specialized applications (like online games or analyt-
ical tools). On one hand such solutions allow for more customization
and greater control of the resulting publication, but on the other hand
they require knowledge of one or more coding languages (JavaScript,
HTML, TypeScript, etc.), and for this reason are generally targeted at
specialized /professional users.

Less demanding, from the creation/setup point of view, are node-
based solutions such as Goo Create [64], a complete 3D authoring
platform for cloud-based 3D content creation, or CopperLicht [8], an
open-source 3D library equipped with a full 3D world authoring editor.
These systems do not require writing code (even if they often include
sections where this is still possible) but provide the content creator with
a drag-and-drop interface for visual programming, where the scene, its
behavior, and the interactions are defined by assembling and configuring
predefined elements.

Finally, there are solutions which do not require the use of a pro-
gramming environment, like Koru [27], an authoring software that helps
to prepare 3D models and to export the result online, or Kokowa [216],
a publishing platform for non-programmers to create and share 3D and
VR spaces. In these tools, a GUI is used as a wizard setup to drive the
publishing step by step (typical of SaaS systems). These approaches do
not require any kind of coding, and are thus ideal for naive users; the
drawback is that they have a more general purpose orientation and do
not allow full personalization of the published viewer.

An alternative categorization of Web3D systems can be based on
the basic publication aim they promote, in other words their primary
purpose/target for being published. This means differentiating, for
example, solutions more focused on digital content creation (DCC) from
others specifically addressed at pure visualization, characterizing all of
them depending on the degree of DCC support provided (intended as
real-time object/scene editing possibilities).

For a number of systems, the presentation feature is predominant
with respect to the digital content design component (very basic and
often only related to the customization of the scene). Kubity [106], a
cloud-based 3D player mainly intended to enable end users to experience
models in AR/VR online, is a perfect example of this. In many other

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.5. Publishing Context 59

A e (T

Figure 5.7: Collaborative DCC implementation in the Lagoa [45] Web3D system.
This cloud-based solution aimed at CAD design guaranteed performant real-time
multi-user synchronized scene editing.

more technical and specialized cases, the ratio between presentation and
creation support is inverted. In these latter solutions the web viewer has
the primary purpose of supporting the content creation process, whose
final result may not even be public online publication (as in the case of
the MeshLabJS [200] editing platform). Such systems are often aimed
at technical users and usually provide support for collaborative DCC. A
good example of one of these was the Lagoa platform [45], a cloud-based
system for online CAD design, shown in Figure 5.7; the company was
recently acquired by Autodesk to help in the development of its own,
similar, product, Fusion 360 [13]. Of course, between these two extremes
there exists a full set of hybrid systems in which the proportion of the
ingredients is more balanced. This group includes solutions focused
on web visualization, but at the same time able to provide technical
features for assisting digital content creation, for instance supporting
modeling and animation—the already introduced Clara.io platform [58]
being a representative example.

An additional categorization of modern Web3D software may be
driven by their specialization. Nowadays these systems are more and
more designed to satisfy specific needs, or to focus on particular goals,
than following the idea of general-purpose visualization. This can lead

The version of record is available at: http://dx.doi.org/10.1561/0600000083

60 Analysis of the Features

to a characterization based on the target uses of the analyzed platforms;
that can be applied not only to the basic aims of a publishing solution,
but also to its ultimate target purposes, i.e. the type of final experience
supported.

For example, as already stated in Section 5.3, solutions aimed at
specialized technical fields generally provide specific presentation or
analysis components. For example, systems aimed at geographic infor-
mation system (GIS) visualization, like Cesium [36], a JavaScript library
for 3D globe and map creation, often assist the development with a set
of features (geo-vector formats, map projections, Columbus view, large
distance and coordinate handling) hard to find in other contexts. Like-
wise, solutions designed for creating games and similar interactive 3D
applications, such as Unity3D [191] or the Unreal Engine [55], another
multi-platform game engine equipped with a WebGL exporter, offer
very specialized components like a physics engine, networking, or even
spatial audio. In Section 5.3 we also saw that characterizing features
connected to specialized types of experiences may be related not only to
particular presentation or analysis elements, but also to distinctive in-
teraction paradigms. For example, a Web3D solution designed to present
architectural models will exploit the first-person navigation mode, to let
the user walk through the 3D scene. The already introduced Archilogic
[10] system is an example of that category.

Interpreting the concept of supported experience in the broadest
sense, some side elements of a publishing platform can also contribute
to this level of characterization. For instance, solutions aimed at online
sharing of 3D creations often include social media tools (with linking
or embedding capabilities) and virtual spaces (model galleries or show-
cases) for supporting content dissemination. These community-oriented
features, external to and seemingly disconnected from the rendering
context, actually represent a characterizing factor as important as the
others in the virtual web environment, able to influence the choice (and
also the success) of a Web3D platform; the Sketchfab [171] case can be
considered a representative example.

A final high-level classification of the available solutions can be
drawn by considering the costs and distribution licenses of the reviewed

The version of record is available at: http://dx.doi.org/10.1561/0600000083

5.5. Publishing Context 61

systems. As for any other software product, the usage terms and costs
are important characterizing factors.

For example, the choice between a client-based and a server-based
platform can influence the costs of a specific solution. As we have seen in
Section 5.1, the need for server-based capabilities (storage, computation,
user management, database support) for some of the existing solutions
often leads to non-trivial expenses (for content creators interested in
self-publishing), or to the payment of a subscription (for end users of
commercial services). From the point of view of users, current trends
are generally toward combinations of basic services for free (with some
usage restrictions) and more specialized features that become optional
and fee-based (with fewer or no restrictions). The PlayCanvas system
[54] is just one of many adopting this policy.

Some online platforms are offered free of charge, even if they require
high maintenance costs, because they are used as a “beachhead” to
promote ancillary products or other paid services. As an example, this
is the case for Thingiverse [172], created and maintained by a 3D printer
manufacturer to provide its users with usable content, thus promoting
the sales of 3D printers, or ReMake [14], created and maintained by
Autodesk as a way to introduce their software to possible clients.

Fortunately, thanks to its wide landscape, the Web3D field has
solutions offering all the different possibilities, with open-source [e.g.
CopperLicht: 8], freemium [e.g. Sketchfab: 171], or commercial [e.g.
Cl3ver: 82] solutions, and licenses like Apache [e.g. BabylonJS: 34], MIT
[e.g. A-Frame: 130], or GPL [e.g. Blend4Web: 186].

The version of record is available at: http://dx.doi.org/10.1561/0600000083

6

Discussion

As discussed in Chapter 4, a single, organic description of the Web3D
panorama is complex, due to the necessity of building a low- to high-
level categorization of the available solutions. For this reason, we have
tried to look at this heterogeneous landscape from two different points
of view. In the previous chapter we presented an analysis of the different
features, organizing them into functional macro-classes. Conversely,
in this chapter we try to work orthogonally, synthesizing the topics
introduced in Chapter 5 into a general reference scheme, with the aim of
using it to outline the profile of the various existing approaches/systems,
connecting each of them with their characterizing features.

These same features will finally be projected on a representative
number of application fields that benefit more than others from Web3D
technologies, in order to assess the ideal approach for each of them, and
also to enrich our classification pattern.

6.1 Classification

In order to provide a map enabling the assessment of the Web3D
solutions introduced so far, we propose a classification based on the
features previously discussed. This reference scheme, connecting these

62

The version of record is available at: http://dx.doi.org/10.1561/0600000083

6.1. Classification 63

features to fully qualified products, is also useful to evaluate how these
characteristics might apply to real-world 3D web systems. Thus, our
classification is primarily based on a representative selection of the
characterizing points introduced in Section 4.2, gathered in a table, to
provide an overview of the amount of support given to each of them by
the reviewed systems.

Ideally, we could have mapped each feature onto each of the Web3D
solutions reviewed so far, but we decided not to follow this avenue mainly
because of the difficulty in representing in a visually accessible table
the large number of combinations eventually obtained (approximately
a hundred, since we would intersect around twenty features with the
approximately fifty systems introduced).

Moreover, consideration of the effective usefulness of explicitly refer-
ring to existing solutions has led us to avoid this kind of representation,
since it would be condemned to become quickly obsolete in a technologi-
cal environment in rapid evolution such as Web3D, where new solutions
are systematically released and old ones disappear quickly—suffice it to
say that just during the drafting of the present review three different
software systems, Lagoa [45], Autodesk ReMake [14], and ShareMy3D
[9], became unavailable for different reasons.

We therefore decided to proceed in a different way, and, exploiting
the schematic representation proposed in Figures 4.2 and 4.4, we decided
to simplify and synthesize the reviewed approaches and the features
harmonizing them into a representative number of reference classes
(LiB/LiB++, TooL/ToOLKIT/FRAMEWORK, APP) and characterizing
levels (DATA, SCENE, INTERACTION, INTEGRATION, PUBLICATION).
Table 6.1 shows the results of this classification, giving an overview of
the surveyed software based on the aforementioned criteria. The scheme
outlines which publishing feature or technique is supported by which
application domain, with the amount of support expressed as a range
between a couple of values selected among: none [, low [*], medium
[**], and full [***] support.

Even though this schematic representation leaves out some very
broad (but no less important) features, like licensing and cost factors, it
is still able to exhaustively present the options that a practitioner has
at hand when 3D content for the web has to be created, providing an

The version of record is available at: http://dx.doi.org/10.1561/0600000083

64 Discussion

Table 6.1: Web3D characterizing features mapped onto the various publishing
approaches. The solutions are classified according to a representative selection of the
criteria given in the bulleted list in Section 4.2. The software systems and features
are grouped as in Figures 4.2 and 4.4, respectively, to provide a quick overview of
the methodologies and options available to a content creator. Each cell shows the
amount of support given by a group of systems to each feature level, expressed as
a range between “none” and “full” The elements are sorted by supported features
in order to show potential trends. The gray cells represent the overall behavior of
standalone end products (full GUI applications mainly working locally, characterized
by access and customization features similar to low-/middle-level approaches).

ToorL,
LB, LIB++ TooLxirT, App
FRAMEWORK
Representation types/schemes
«
H
5 Encoding/transmission formats ok Rk AN —/**
Pre-processing possibilities
Spatial/logical definition modes
=
Z
8 Appearance customization features o e A =/**
n
Animation possibilities
Z .
© Tasks and paradigms
H
)
é Interface-based components ke A A
=
2
~ Specialized I/O modalities
Z .
© Hyperlink-based schemes
H
>
% Informative enrichment tools —/** WA e
~ Authoring elements
Z . 1eps
S Content creation facilities
H
<
% Real-time DCC modalities -/* WA o e
m
=
[al

Specialized high-level elements

The version of record is available at: http://dx.doi.org/10.1561/0600000083

6.2. Application Fields 65

implicit understanding of the level of complexity /difficulty involved in
obtaining high-quality results.

Moreover, analysis of the proposed scheme shows that it is possible
to glimpse some interesting trends. In particular, scrolling through the
table from the features point of view (row-major order from top to
bottom), it attests that low-level functionalities (mostly DATA and
SCENE related) are usually better handled by libraries, APIs, or local
solutions, while INTEGRATION/PUBLICATION features are generally
more broadly supported by higher-level systems (mainly thanks to
GUTIs or authoring interfaces). At the same time, moving to the systems
point of view (column-major order from left to right), the table points
out that, while the LiB/LiB4++ and TooL/TOOLKIT/FRAMEWORK
support curve decreases going from top to bottom (i.e. from low-level
to high-level features), the APP trend does the opposite, significantly
increasing the amount of support given to each characterizing level
moving from top to bottom.

Finally, this schematic visualization is also important in confirming
the point stated in Section 4.1 concerning the problems in clearly
classifying the wide range of solutions in a universal fixed scheme.
Seeking to represent in the table, for instance, standalone software
aimed at two-step 3D web publishing (local model/scene processing and
online exporting), we would get an unusual characterization. The level
of support for this class of solutions (essentially full GUI applications
providing customization possibilities equal to middle-level systems and
data/scene access comparable to low-level approaches) could in fact
be ported to the proposed scheme only by following a transversal
representation. The gray cells in the table just serve to highlight those
particular cases in which we can convey all these commercial end
products that have to be downloaded and installed, like for example
Unity3D [191] or Autodesk ReMake [14].

6.2 Application Fields

In order to specialize the reference scheme introduced in Section 6.1,
we apply its features to some representative application fields. As well
as providing an overview of the best-fit systems for each specific field of

The version of record is available at: http://dx.doi.org/10.1561/0600000083

66 Discussion

application, we also want to define the full set of features that content
creators could have at hand while creating specialized 3D web content.
We notice that for some of these fields the solutions all tend to be of
the same type, while other fields present more heterogeneous sets of
solutions.

Cultural Heritage

Cultural heritage (CH) applications, and related solutions, are mainly
related to the publication of content (with some degree of personal-
ization). Usually the 3D data involved in this kind of publishing are
high-resolution 3D models coming from real-world acquisitions (digi-
tized with photogrammetry /structure from motion approaches or active
scanning devices). Handling these datasets online (large size, huge com-
plexity) requires the adoption of multi-resolution representations and
performant data transfer formats, so a pre-processing phase is usually
needed. Since the 3D models to be published often represent copyrighted
objects, IPR protection and infrastructure security are relevant in CH
systems that offer cloud services. Other central elements concern the
possibility to integrate informative content into the 3D layer, and to
support innovative 1/0 devices (these two aspects are of fundamental
importance when building virtual museums). Camera animations can
also be really useful, while model animations are not a strict require-
ment. Effective interactive 3D scene inspection and navigation are both
mandatory features (for architecture and artwork 3D models). Con-
versely, scene customization and editing tools are not so important, due
to the need to convey the proper message and to pursue high fidelity in
the visualization; they can also be dangerous since they could produce
model appearance modifications.

Cultural heritage is characterized by a heterogeneous set of applica-
tion cases and requirements, and by a low economic value since most of
the applications are implemented on a low budget. As an application
field that does not attract much interest from commercial companies,
there are few ready-to-use tools specifically designed for this domain. For
this reason, the CH community very often has to use tools developed for
other purposes and domains, such as games or animation—immediate

The version of record is available at: http://dx.doi.org/10.1561/0600000083

6.2. Application Fields 67

examples are Unity3D [191] and Unreal Engine [55]. This does not pre-
vent some systems not specifically designed for CH, such as Sketchfab
[171] or Autodesk ReMake [14], actually fitting the CH application
needs quite well (to the point where Sketchfab now has a dedicated
section to support web publishing by cultural institutions). Also, aca-
demic solutions that do not explicitly refer to CH, like Potree [164] and
the Visual Media Service [201], are extensively used to publish CH 3D
models. However, ad hoc CH-oriented solutions have been proposed,
too. Mostly initiated by cultural or academic institutions, they may be
either “black box” systems of restricted use, like the 3D viewers of the
Petrie Museum [192] or the Smithsonian [173], or open solutions freely
available and accessible on the web, like the 3SDHOP framework [199].

Biomedical

Biomedical applications are typically focused on visualization, enabling
the rendering of particle systems (by ray-casting) and volumes (by
ray-marching). This could direct the choice of the appropriate pub-
lishing platform to systems capable of handling these datasets on the
web (even if, as we have seen, triangle-based techniques could also
be exploited). Due to the technical nature of these publications, the
presence of specialized analytical tools (enabling visual and numerical
data analysis, such as unit cell operations, computation of distances and
angles, torsion angle measurements, etc.) plays a key role, as well as
the possibility to use interaction paradigms tailored to inspecting this
specific 3D content. For the same reason Web3D solutions providing
interactive (or collaborative) annotation systems may be preferable.
Finally, animation features are also extremely useful in biomedical
presentations, particularly for didactic and dissemination purposes.
Among the systems presented so far, besides the more research-
oriented proposals like X3DMMS [215] and MEDX3DOM [42], it is
worth mentioning a couple of open-source projects like X Toolkit [212]—
a framework for visualizing and interacting with medical imaging data,
it provides a simple API offering native support for neuroimaging file
formats—and JSmol [90], a molecular viewer for chemical structures in
3D with features for molecules, crystals, materials, and biomolecules.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

68 Discussion

GIS, Maps, and Architecture

This publishing field covers a heterogeneous set of Web3D systems,
all somehow dedicated to the creation of map-based applications (at
different levels of detail and complexity). Almost all these approaches
require the handling of datasets structured as LoD trees for progressive
view-dependent refinement, that probably need to be georeferenced
(particularly in web GIS solutions). Map applications often make exten-
sive use of geometry instancing for repeated objects in the 3D scene,
and often exploit camera animations supporting “spatial” storytelling
(the recent Voyager function in the popular Google Earth [66] appli-
cation implements this feature). Of course, the navigation component
(usually first-person/walkthrough) is equally important, enabling the
interactive exploration of these datasets (especially for architectural
models). Finally, this domain also requires a peculiar set of specific pre-
sentation/analysis features, like individual object picking, atmospheric
element drawing, precision handling of large view spaces (avoiding
z-fighting) and large world coordinates (avoiding jitter), or timeline
controls for the simulation of time-varying phenomena.

Nowadays, GIS visualization and analysis on the web can be ex-
ploited using a number of interactive systems specialized for the vast
volumes of geospatial data and able to provide vector graphics, surface
models, and 3D buildings. There are both commercial solutions, such
as GeoWeb3D [62] and GeoBrowser 3D [69], and open-source resources,
like the OpenWebGlobe SDK [193] and the aforementioned Cesium
[36]. Map-based Web3D approaches can be aimed not just at geograph-
ical visualization, like the popular Google Maps API [67], but also at
visual explanatory generic-data analysis, like Deck.gl [188]—complex
visualizations of large datasets rendered as a stack of visual layers—or
Seerene [76], which provides map-based interactive analysis of source
code. Map-driven visualization is also useful in platforms addressed
at architecture, such as Archilogic [10] and 3D Wayfinder [1], both
providing floor plans and 3D building interior and exterior exploration.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

6.2. Application Fields 69

CAD

Computer-aided design solutions span a wide space, from simple to
professional systems, mainly depending on the complexity of the op-
erations and task required. The Web3D publishing solutions reflect
this. Models exploited in this application field are 3D meshes, usually
characterized by relative structural simplicity (in terms of the number
of triangles/faces), since they are generated (and serve) in design and
modeling processes. For this reason, and mostly to ensure coherence in
the geometric editing, they generally rely on single-resolution formats.
A central feature of this kind of application is certainly the support
for DCC, both in specialized tools (kinematic assembly, geometric con-
straints, distances, angle offsets, etc.) and higher-level features like
collaborative editing and version control. For more technical uses (for
instance in industrial pipelines for photorealistic publication) it is fun-
damental to also be able to steer the 3D object/scene appearance editing
(shaders, materials, lighting, etc.), as well as providing access to the
proper authoring tools able to drive these specialized operations.

The landscape of solutions addressing CAD includes systems ranging
from those targeted at unskilled users [e.g. Autodesk Tinkercad: 12] to
those intended for professionals [e.g. Lagoa: 45]. Some of the proposed
approaches are oriented more toward editing/modeling, like Autodesk
ReMake [14], while others are more focused on the publishing stage, e.g.
Koru [27]. Commercial solutions, like ThreeKit [78], and free software,
like OpenJSCAD.org [134], a JavaScript web interface for programmatic
modeling, are both provided.

3D Printing

Web applications for 3D printing are, generally, easy-to-use platforms,
where the aim of publication is mostly focused on supporting user-
uploaded sharing (or selling) of printable content. These systems, mostly
implemented as services, provide hosting services and a number of
related high-level features like IPR management strategies, user profiling,
and community-oriented tools. Since printable objects must be a single
simple item, Web3D printing solutions often require bare-bones viewers
aimed at pure visualization of a fized-resolution model.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

70 Discussion

3D printing models have gained momentum in recent years. Due
to this explosion of interest, a lot of SaaS sharing platforms have been
released where end users can interactively visualize content before
downloading it. These systems are generally marketplaces for uploading
and selling 3D object files [e.g. Pinshape: 124], but there also exist
solutions implemented as open virtual spaces where they can be shared
for free, like MyMiniFactory [137] or Thingiverse [172]. The Threeding
platform [183], in addition to allowing the sharing of 3D printing models
and files (both free and paid), also provides a service for on-demand
3D printing (for users without a 3D printer). The Shapeways [168]
startup is instead completely based on the concept of being a printing
(and selling) service, providing users with the possibility of uploading
3D printable files and printing the objects (in over 55 materials and
finishes) for themselves or for others. However, it is not just web service
platforms that are characterized by 3D printing features. Online CAD
systems, for instance, often provide simplified creation features to make
it possible to print the designed models—Autodesk Tinkercad [12],
Leopoly [113], and BlocksCAD [22] belong to this category. Also, some
less specialized solutions may provide support for standard (STL) 3D
printer file formats and the preparation of 3D models for printing, like,
for instance, Autodesk ReMake [14].

Games

Web3D solutions aimed at game development are generally systems
able to handle elaborate 3D scenes made of a large number of modeled
geometries. For that reason they often provide features focused on
complex scene composition (hierarchical geometry instancing). Particular
emphasis is placed on components for customizing scene appearance
(rendering /shading processes), animation (both camera and model),
and ezploration (mainly virtual environment navigation). Of course,
building a game experience also plays a central role, requiring access to
specialized features like physics, networking, and audio control.
Several solutions can be exploited or adapted to Web3D game
development. Almost all the approach typologies are available, from low-
level engines like PhiloGL [17] or KickJS [140] to GUI-based applications

The version of record is available at: http://dx.doi.org/10.1561/0600000083

6.2. Application Fields 71

like Goo Create [64] or CopperLicht [8], and from more general systems
like BabylonJS [34] or Blend4Web [186] to highly specialized software
like PlayCanvas [54] or LayaAir [39]. Even if in this specific field the most
popular solutions remain systems not specifically designed for Web3D,
like Unity3D [191] or the Unreal Engine [55]—both are just equipped
with a WebGL exporter—it is easy to find web-targeted applications like,
for instance, Turbulenz [187], a modular 2D /3D framework focused on
HTML5 game development for desktops and mobile devices, or Voxel.js
[203], a game-building toolkit that makes it easier to create 3D voxel
Minecraft-style games.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

7

Conclusions

Web3D is certainly an intriguing world. Its story has changed suddenly,
evolving from a slow and stagnant past to a rapidly evolving dynamic
present. It is important to note that immediately after the introduction
of WebGL the Web3D domain was perceived as a quasi-mature market
by software companies. This generated instantaneous and conspicuous
investment resulting, in a very short time span, in a series of commercial-
grade systems and software solutions. The sudden availability of many
nice tools is very different from what happened in the past with other
kinds of media, where their web exploitation followed a trial-and-error
approach by players of many different sizes and wealth (from underdogs
to large corporations). This rapid growth has shaped the direction of
evolution and development of this field and has created de facto stan-
dards in terms of formats, interface paradigms, and available features.
This market-driven nature is also demonstrated by most of the available
tools and systems not having a reference scientific publication, even
though they present innovative technical solutions.

As stated at the beginning of this survey, the fluidity of the web
context makes it difficult to outline a clear and rigid classification of
the Web3D denizens. To overcome this issue, we organized our analysis

72

The version of record is available at: http://dx.doi.org/10.1561/0600000083

7.1. Research Directions 73

by isolating some of the prominent and recurring features that are
used in the different tools and applications, then by grouping them
by their scope and functionality. Users may find this characterization
helpful in choosing a system suitable for publishing their data, but also
in understanding the underlying technology and having an outline of
the available features and mechanisms that are nowadays considered
standard. Developers can find in this review an overview of the different
issues and algorithmic/software solutions, with a mapping to several
application fields.

Looking at the wide variety of tools and solutions now available in
the Web3D panorama, it may seem that every need has already been
covered by existing tools. However, on closer inspection, many “missing
links” appear obvious. The rapid development of the field has left out
many niches for specialist and technical users, and has restricted some of
the analyzed features to specific fields and associated implementations,
neglecting others. This review may be helpful for readers interested in
finding these empty spots.

7.1 Research Directions

The evolution of the Web3D ecosystem has exploited the results of
various research fields, from geometry processing to rendering, from data
compression and streaming to web protocols, from human—computer
interfaces to metadata and ontologies. It is impractical to list all the
possible research directions of such a wide field.

Clearly, the design of future Web3D technologies will offer space
for further development of basic geometry processing algorithms and
methods, as well as improvements in data management/compression/
streaming methods—see, for example, the recent stable release of the
glTF asset delivery format [101]. User interaction with a 3D space is
still a field where things can (hopefully) improve, maybe in conjunction
with the technological advance of new output devices (HDM style) and
the development of new 3D input devices. However, these are trivial
forecasts.

Looking at more interesting aspects, the IPR problem described in
Section 3.3 is still largely unexplored. Most of the available solutions and

The version of record is available at: http://dx.doi.org/10.1561/0600000083

74 Conclusions

approaches are simple retargeting and hijacking of existing approaches
that have been developed for non-web platforms or non-3D media. Here
there will be plenty of space for new approaches and developments. This
will not only be a “technical” issue, but will also affect the commercial
approach, legislative considerations, and user interaction/access aspects.

Another promising field is the integration of Web3D with novel
devices. Most Web3D solutions already support mobile devices, but
mostly with basic behavior. Truly exploiting their hardware and, more
importantly, the different behavior that users have when interfacing with
a mobile device, is still a direction to be explored. The same is true for
VR/AR output devices (which are also still evolving in their PC-based
incarnations). Natural interaction devices and the new generation of
low-cost 3D measuring devices (integrated into mobile devices) also
need to be mapped effectively to Web3D applications.

Considering instead the Web3D access paradigm, we have witnessed
another trend. As in many other fields, big software houses are experi-
menting with using the web as a platform for complete software solutions,
offering cloud-based versions of their software. This has multiple ad-
vantages: easier and stronger management of licenses, instantaneous
software updates, and the possibility of relying on cloud computation
on dedicated servers and thus having the Web3D application as just a
front end to a remote service. Examples of this trend are the SketchUp
software [185], currently in beta with a fully online version, or the Au-
todesk ReMake/ReCap Photo tool [14], where the web platform is the
front end to a cloud-based 3D geometry processing software pipeline.

Finally, the integration of other multimedia elements like images or
videos into a 3D environment is currently represented only by simple,
non-extensible solutions. We believe that a tool providing features to
allow immersive, integrated visualization of multiple data types (not just
3D) would open outstanding opportunities in terms of user experience
and entertainment.

The version of record is available at: http://dx.doi.org/10.1561/0600000083

Acknowledgments

The research leading to these results has been partially supported by the
European Union H2020 Programme under grant agreement no. 654119
(EC “PARTHENOS” project), and by the International Bilateral Joint
Lab CNR-CNRS (“Mass3DxCH,” 2017-2019).

75

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References

[1] 3D Technologies R&D. 3D Wayfinder, 2012. https://3dwayfinder.com.

[2] 3D Technologies R&D. Frak Engine, 2012. https://github.com/evanw/
lightgl.js.

[3] Adobe. Stage 3D, 2011. http://www.adobe.com/devnet/flashplayer/
stage3d.html.

[4] J. Agenjo. WebGL Studio, 2013. http://webglstudio.org.

[5] J. Agenjo, A. Evans, and J. Blat. WebGLStudio: A pipeline for WebGL
scene creation. In Proceedings of the 18th International Conference on
8D Web Technology, Web3D ’13, pages 79-82, New York, NY, USA,
2013. ACM.

[6] A. L. Ahire, A. Evans, and J. Blat. Animation on the web: A survey. In
Proceedings of the 20th International Conference on 8D Web Technology,
Web3D ’15, pages 249-257, New York, NY, USA, 2015. ACM.

[7] P. Alliez and M. Desbrun. Progressive compression for lossless transmis-
sion of triangle meshes. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 01, pages
195-202, New York, NY, USA, 2001. ACM.

[8] Ambiera. CopperLicht, 2010. http://www.ambiera.com/copperlicht.

[9] F. Anfinsen and K. Hope. ShareMy3D, 2015. https://web.archive.org/
web/20160125053538 /https:/ /www.sharemy3d.com/.

[10] Archilogic. Archilogic, 2014. https://archilogic.com.
[11] Autodesk. Maya, 1998. https://www.autodesk.com/products/maya.

76

https://3dwayfinder.com
https://github.com/evanw/lightgl.js
https://github.com/evanw/lightgl.js
http://www.adobe.com/devnet/flashplayer/stage3d.html
http://www.adobe.com/devnet/flashplayer/stage3d.html
http://webglstudio.org
http://www.ambiera.com/copperlicht
https://web.archive.org/web/20160125053538/https://www.sharemy3d.com/
https://web.archive.org/web/20160125053538/https://www.sharemy3d.com/
https://archilogic.com
https://www.autodesk.com/products/maya

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References 77

[12]
[13]

[27]
[28]

Autodesk. Tinkercad, 2011. https://www.tinkercad.com.

Autodesk. Fusion 360, 2013. https://www.autodesk.com/products/
fusion-360.

Autodesk. ReMake, 2015. http://remake.autodesk.com.

J. Behr, P. Eschler, Y. Jung, and M. Zollner. X3DOM: A DOM-based
HTML5/X3D integration model. In Proceedings of the 14th International
Conference on 3D Web Technology, Web3D ’09, pages 127-135, New
York, NY, USA, 2009. ACM.

J. Behr, Y. Jung, J. Keil, T. Drevensek, M. Zoellner, P. Eschler, and
D. Fellner. A scalable architecture for the HTML5/X3D integration
model X3DOM. In Proceedings of the 15th International Conference on
Web 3D Technology, Web3D 10, pages 185194, New York, NY, USA,
2010. ACM.

N. Belmonte. PhiloGL, 2011. http://www.senchalabs.org/philogl.

E. A. Bier. Skitters and jacks: Interactive 3D positioning tools. In
Proceedings of the 1986 Workshop on Interactive 3D Graphics, 13D ’86,
pages 183-196, New York, NY, USA, 1987. ACM.

J. Bistrom, A. Cogliati, and K. Rouhiainen. Post-WIMP user interface
model for 3D web applications. 2005. Helsinki University of Technology.

Bitmanagement Software. BS Contact, 2002. http://www.
bitmanagement.com.

Blender Foundation. Blender, 1995. https://www.blender.org.
BlocksCAD. BlocksCAD, 2017. https://www.blockscad3d.com.

A. Blume, W. Chun, D. Kogan, V. Kokkevis, N. Weber, R. W. Petterson,
and R. Zeiger. Google Body: 3D human anatomy in the browser. In
ACM SIGGRAPH 2011 Talks, SIGGRAPH ’11, pages 19:1-19:1, New
York, NY, USA, 2011. ACM.

E. S. Boese. An Introduction to Programming with Java Applets. Jones
& Bartlett Learning, Burlington, MA, USA, 2009.

D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev. An introduc-
tion to 3D user interface design. Presence, 10:96-108, 2001.

D. A. Bowman, E. Kruijff, J. J. LaViola, and 1. Poupyrev. 3D User
Interfaces: Theory and Practice. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004.

Boxshot. Koru, 2016. http://boxshot.com/koru.
P. Brunt. GLGE — WebGL for the lazy, 2010. http://www.glge.org.

https://www.tinkercad.com
https://www.autodesk.com/products/fusion-360
https://www.autodesk.com/products/fusion-360
http://remake.autodesk.com
http://www.senchalabs.org/philogl
http://www.bitmanagement.com
http://www.bitmanagement.com
https://www.blender.org
https://www.blockscad3d.com
http://boxshot.com/koru
http://www.glge.org

78

[29]

[30]

W w
i)

‘W

[34]

[35]

[36]
[37]

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References

D. Brutzmann and L. Daly. X3D: Eztensible 3D Graphics for Web
Authors. Morgan Kaufmann, Burlington, MA, USA, 2007.

M. Buckwald and D. Holz. Leap Motion, 2010. https://www.leapmotion.
com.

A. Buzin. WhitestormJS, 2015. https://whs.io.
R. Cabello. Three.js, 2010. http://threejs.org.

C. Calabrese, G. Salvati, M. Tarini, and F. Pellacini. cSculpt: A system
for collaborative sculpting. ACM Transactions on Graphics, 35(4):91:1-
91:8, 2016.

D. Catuhe and D. Rousset. BabylonJS, 2013. https://www.babylonjs.
com.

F. Cayre, P. Rondao-Alface, F. Schmitt, Benoit Macq, and H. Maitre.
Application of spectral decomposition to compression and watermarking

of 3D triangle mesh geometry. Signal Processing: Image Communication,
18(4):309-319, 2003.

Cesium Consortium. Cesium, 2011. https://cesiumjs.org.

J. Chandler, H. Obermaier, and K. I. Joy. WebGL-enabled remote visu-
alization of smoothed particle hydrodynamics simulations. In E. Bertini,
J. Kennedy, and E. Puppo, eds, Eurographics Conference on Visualiza-
tion (EuroVis) — Short Papers. The Eurographics Association, Geneva,
Switzerland, 2015.

M. Chen, S. J. Mountford, and A. Sellen. A study in interactive 3-D
rotation using 2-D control devices. In Proceedings of the 15th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
'88, pages 121-129, New York, NY, USA, 1983. ACM.

X. Cheng-Hong. LayaAir, 2015. http://www.layabox.com.

W. Chun. WebGL models: End-to-end. In P. Cozzi and C. Riccio,
eds, OpenGL Insights, pages 431-454. A K Peters/CRC Press, Natick,
MA, USA, 2012. https://www.seas.upenn.edu/~pcozzi/OpenGLInsights/
OpenGLInsights-WebGLModelsEndToEnd.pdf.

P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Batched multi triangulation. In Proceedings IEEE Vi-
sualization, pages 207-214, conference held in Minneapolis, MI, USA,
October 2005. IEEE Computer Society Press. http://veg.isti.cor.it/
Publications/2005/CGGMPS05.

https://www.leapmotion.com
https://www.leapmotion.com
https://whs.io
http://threejs.org
https://www.babylonjs.com
https://www.babylonjs.com
https://cesiumjs.org
http://www.layabox.com
https://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-WebGLModelsEndToEnd.pdf
https://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-WebGLModelsEndToEnd.pdf
http://vcg.isti.cnr.it/Publications/2005/CGGMPS05
http://vcg.isti.cnr.it/Publications/2005/CGGMPS05

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References 79

[42]

J. Congote. MedX3DOM: MedX3D for X3DOM. In Proceedings of the
17th International ACM Conference on 8D Web Technology, Web3D 12,
page 179, New York, NY, USA, 2012. ACM.

B. D. Conner, S. S. Snibbe, K. P. Herndon, D. C. Robbins, R. C. Zeleznik,
and A. van Dam. Three-dimensional widgets. In Proceedings of the 1992
Symposium on Interactive 3D Graphics, 13D ’92, pages 183-188, New
York, NY, USA, 1992. ACM.

D. H. Curtis. Flash Web Design: The Art of Motion Graphics. New
Riders Publishing, Thousand Oaks, CA, USA, 2000.

T. Da Costa. Lagoa, 2011. https://web.archive.org/web/
20180209211707 /http://home.lagoa.com:80.

B. P. DeLillo. WebGLU development library for WebGL. In ACM
SIGGRAPH 2010 Posters, SIGGRAPH 10, page 135:1, New York, NY,
USA, 2010. ACM.

M. Di Benedetto, F. Ponchio, F. Ganovelli, and R. Scopigno. SpiderGL: A
JavaScript 3D graphics library for next-generation WWW. In Proceedings
of the 15th International Conference on Web 3D Technology, Web3D 10,
pages 165-174, New York, NY, USA, 2010. ACM.

M. Di Benedetto, F. Ganovelli, and F. Banterle. Features and design
choices in SpiderGL. In P. Cozzi and C. Riccio, eds, OpenGL Insights,
pages 583-604. A K Peters/CRC Press, Natick, MA, USA, 2012.

J. Dirksen. Learning Three.js: The JavaScript 3D Library for WebGL.
Packt Publishing, Birmingham, UK, 2013.

J. Dobos and A. Steed. 3D revision control framework. In Proceedings
of the 17th International Conference on 3D Web Technology, Web3D 12
pages 121-129, New York, NY, USA, 2012. ACM.

B. Drozdz. J3D — Unity3D to Three.js exporter, 2011. https://github.
com/drojdjou/J3D.

P. Du, Y. Song, and L. Deng. A real-time collaborative framework for
3D design based on HTML5. In Proceedings of the 20th International
IEEE Conference on Computer Supported Cooperative Work in Design,
CSCWD 16, pages 215-220, New York, NY, USA, 2016. IEEE.

F. Dupont, T. Duval, C. Fleury, J. Forest, V. Gouranton, P. Lando,
T. Laurent, G. Lavoué, and A. Schmutz. Collaborative scientific visual-
ization: The COLLAVIZ framework. In Proceedings of the Joint Virtual
Reality Conference of EuroVR-EGVE-VEC, Eurographics Association,
Geneva, Switzerland, 2010.

https://web.archive.org/web/20180209211707/http://home.lagoa.com:80
https://web.archive.org/web/20180209211707/http://home.lagoa.com:80
https://github.com/drojdjou/J3D
https://github.com/drojdjou/J3D

The version of record is available at: http://dx.doi.org/10.1561/0600000083

80 References

[54] W. Eastcott, D. Evans, V. Kalpias-Illias, J. Rooney, and M. Mihejevs.
PlayCanvas, 2011. https://playcanvas.com.

[55] Epic Games. Unreal Engine, 2014. https://www.unrealengine.com.

[56] A. Evans, J. Agenjo, and J. Blat. Web-based visualisation of on-set
point cloud data. In Proceedings of the 11th European Conference on
Visual Media Production, CVMP ’14, pages 10:1-10:8, New York, NY,
USA, 2014. ACM.

[57] A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Blat. 3D
graphics on the web: A survey. Computers € Graphics, 41(0):43-61,
2014.

Exocortex Technologies. Clara.io, 2013. https://clara.io.

"ot
0

ot
)

Fraunhofer. Instant Reality, 2009. http://www.instantreality.org.

J. Gaillard, A. Vienne, R. Baume, F. Pedrinis, A. Peytavie, and
G. Gesquiere. Urban data visualisation in a web browser. In Pro-
ceedings of the 20th International Conference on 3D Web Technology,
Web3D ’15, pages 81-88, New York, NY, USA, 2015. ACM.

[61] F. Ganovelli, M. Corsini, S. Pattanaik, and M. Di Benedetto. Introduction
to Computer Graphics: A Practical Learning Approach. Chapman &
Hall/CRC Press, London, UK, 2014. http://vcg.isti.cur.it/Publications/
2014/GCPD14.

[62] Geoweb3d Inc. Geoweb3d, 2012. http://www.geoweb3d.com.

[63] E. Gobbetti, F. Marton, M. B. Rodriguez, F. Ganovelli, and
M. Di Benedetto. Adaptive quad patches: An adaptive regular structure
for web distribution and adaptive rendering of 3D models. In Proceedings
of the 17th International Conference on 3D Web Technology, Web3D ’12,
pages 9-16, New York, NY, USA, 2012. ACM.

[64] Goo Technologies. Goo Create, 2012. https://github.com/
GooTechnologies/goojs.

Google. 03D, 2009. https://code.google.com/archive/p/o3d/.
Google. Google Earth, 2011. https://www.google.com/earth.

=)
=

(=2]
Q

e i =2 A=A

Google. Google Maps, 2011. https://enterprise.google.com/maps.
Google. WebGL Loader, 2011. https://code.google.com/p/webgl-loader.
GraphiTech. Geo Browser 3D, 2016. http://geobrowser3d.com.

Gravity Sketch Ltd. Gravity Sketch, 2014. https://www.gravitysketch.
com.

D

T e e e s S
=)

https://playcanvas.com
https://www.unrealengine.com
https://clara.io
http://www.instantreality.org
http://vcg.isti.cnr.it/Publications/2014/GCPD14
http://vcg.isti.cnr.it/Publications/2014/GCPD14
http://www.geoweb3d.com
https://github.com/GooTechnologies/goojs
https://github.com/GooTechnologies/goojs
https://code.google.com/archive/p/o3d/
https://www.google.com/earth
https://enterprise.google.com/maps
https://code.google.com/p/webgl-loader
http://geobrowser3d.com
https://www.gravitysketch.com
https://www.gravitysketch.com

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References 81

[71]

I. J. Grimstead, N. J. Avis, and D. W. Walker. Rave: The resource-aware
visualization environment. Concurrency and Computation: Practice and
Experience, 21(4):415-448, 2009.

D. Haehn, S. Knowles-Barley, M. Roberts, J. Beyer, N. Kasthuri, J. Licht-
man, and H. Pfister. Design and evaluation of interactive proofreading
tools for connectomics. IEEE Transactions on Visualization and Com-
puter Graphics, 20(12):2466-2475, 2014.

D. Haehn, N. Rannou, B. Ahtam, E. Grant, and R. Pienaar. Neu-
roimaging in the browser using the X Toolkit. In Frontiers in Neuroin-
formatics Conference Abstract: 5th INCF Congress of Neuroinformat-
ics, 2014. https://www.frontiersin.org/10.3389/conf.fninf.2014.08.00101/
event abstract.

C. Hand. A survey of 3D interaction techniques. Computer Graphics
Forum, 16:269-281, 1997.

I. Hickson. Extending HTML. 2004. http://In.hixie.ch/?start=
1089635050& count=1.

M. Hildebrandt and J. Bohnet. Seerene, 2015. https://www.seerene.com.

H. Hoppe. Progressive meshes. In Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
'96, pages 99-108, New York, NY, USA, 1996. ACM.

B. Houston. ThreeKit, 2015. https://threekit.com.

B. Houston, W. Larsen, B. Larsen, J. Caron, N. Nikfetrat, C. Leung,
J. Silver, H. Kamal-Al-Deen, P. Callaghan, R. Chen, and T. McKenna.
Clara.io: Full-featured 3D content creation for the web and cloud era.
In ACM SIGGRAPH 2018 Studio Talks, SIGGRAPH ’13, pages 8:1-8:1,
New York, NY, USA, 2013. ACM.

HTC. Vive, 2016. https://www.vive.com.
HUMUSOFT. Orbisnap, 2005. http://www.orbisnap.com.
D. Iborra and V. Nordstrom. Cl3ver, 2013. https://www.cl3ver.com.

J. Jankowski. A taskonomy of 3D web use. In Proceedings of the 16th
International Conference on 38D Web Technology, Web3D ’11, pages
93-100, New York, NY, USA, 2011. ACM.

J. Jankowski and S. Decker. A dual-mode user interface for accessing 3D
content on the World Wide Web. In Proceedings of the 21st International
Conference on World Wide Web, WWW 12, pages 1047-1056, New York,
NY, USA, 2012. ACM.

https://www.frontiersin.org/10.3389/conf.fninf.2014.08.00101/event_abstract
https://www.frontiersin.org/10.3389/conf.fninf.2014.08.00101/event_abstract
http://ln.hixie.ch/?start=1089635050&count=1
http://ln.hixie.ch/?start=1089635050&count=1
https://www.seerene.com
https://threekit.com
https://www.vive.com
http://www.orbisnap.com
https://www.cl3ver.com

82

[85]

[94]

[95]

[96]

[97]

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References

J. Jankowski and S. Decker. On the design of a dual-mode user interface
for accessing 3D content on the World Wide Web. International Journal
of Human—Computer Studies, 71(7-8):838-857, 2012.

J. Jankowski and M. Hachet. A survey of interaction techniques for
interactive 3D environments. In M. Sbert and L. Szirmay-Kalos, eds, Eu-
rographics 2018 — State of the Art Reports. The Eurographics Association,
Geneva, Switzerland, 2013.

J. Jankowski and M. Hachet. Advances in interaction with 3D environ-
ments. Computer Graphics Forum, 34(1):152-190, 2015.

J. Jankowski, S. Ressler, K. Sons, Y. Jung, J. Behr, and P. Slusallek.
Declarative integration of interactive 3D graphics into the World-Wide
Web: Principles, current approaches, and research agenda. In Proceedings
of the 18th International Conference on 3D Web Technology, Web3D 13,
pages 39-45, New York, NY, USA, 2013. ACM.

B. Jenny, B. Savri¢, and J. Liem. Real-time raster projection for web
maps. International Journal of Digital Earth, 9(3):215-229, 2016.

Jmol Development Team. JSmol — JavaScript-based molecular viewer
From Jmol, 2013. http://sourceforge.net/projects/jsmol.

JogAmp. JOGL — Java OpenGL, 2004. http://jogamp.org/jogl/www.

T. Johansson. Taking the canvas to another dimension, 2007.
https://web.archive.org/web/20071117170113/http://my.opera.com/
timjoh/blog/2007/11/13 /taking-the-canvas-to-another-dimension.

S. Jourdain, J. Forest, C. Mouton, B. Nouailhas, G. Moniot, F. Kolb,
S. Chabridon, M. Simatic, Z. Abid, and L. Mallet. ShareX3D, a scientific
collaborative 3D viewer over HTTP. In Proceedings of the 13th Inter-
national Symposium on 3D Web Technology, Web3D 08, pages 35—41,
New York, NY, USA, 2008. ACM.

S. Jourdain, U. Ayachit, and B. Geveci. ParaViewWeb: A web framework
for 3D visualization and data processing. In Proceedings of the IADIS

International Conference on Visual Communication, pages 502-506, 2010.
IADIS.

Y. Jung, J. Behr, and H. Graf. X3DOM as carrier of the virtual heritage.
In Proceedings of the 4th International Workshop on 38D Virtual Recon-
struction and Visualization of Computer Architectures, 2011. ISPRS.

M. Kamburelis. view3dscene, 2004. https://castle-engine.sourceforge.io/
view3dscene.php.

L. Kay. SceneJS, 2010. http://scenejs.org.

http://sourceforge.net/projects/jsmol
http://jogamp.org/jogl/www
https://web.archive.org/web/20071117170113/http://my.opera.com/timjoh/blog/2007/11/13/taking-the-canvas-to-another-dimension
https://web.archive.org/web/20071117170113/http://my.opera.com/timjoh/blog/2007/11/13/taking-the-canvas-to-another-dimension
https://castle-engine.sourceforge.io/view3dscene.php
https://castle-engine.sourceforge.io/view3dscene.php
http://scenejs.org

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References 83

[98]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

A. Khan, I. Mordatch, G. Fitzmaurice, J. Matejka, and G. Kurtenbach.
ViewCube: A 3D orientation indicator and controller. In Proceedings of
the 2008 Symposium on Interactive 3D Graphics and Games, 13D 08,
pages 17-25, New York, NY, USA, 2008. ACM.

Khronos Group. OpenGL ES — The standard for embedded accelerated
3D graphics, 2003. https://www.khronos.org/opengles.

Khronos Group. WebGL — OpenGL ES for the web, 2009. https:
//www.khronos.org/webgl.

Khronos Group. glTF — GL transmission format, 2015. https://www.
khronos.org/gltf.

Khronos Group. WebGL section at SIGGRAPH 2015, 2015. https:
//www khronos.org/news/events/2015-siggraph.

F. Klein, K. Sons, D. Rubinstein, S. Byelozyorov, S. John, and
P. Slusallek. Xflow: Declarative data processing for the web. In Pro-
ceedings of the 17th International Conference on 3D Web Technology,
Web3D ’12, pages 37-45, New York, NY, USA, 2012. ACM.

F. Klein, D. Rubinstein, K. Sons, F. Einabadi, S. Herhut, and P. Slusallek.
Declarative AR and image processing on the web with Xflow. In Pro-
ceedings of the 18th International Conference on 3D Web Technology,
Web3D ’13, pages 157-165, New York, NY, USA, 2013. ACM.

F. Klein, K. Sons, D. Rubinstein, and P. Slusallek. XML3D and Xflow:
Combining declarative 3D for the web with generic data flows. IEEFE
Computer Graphics and Applications, 33(5):38—-47, 2013.

Kubity. Kubity, 2013. https://www.kubity.com.

E. Kwan. Touch with WebGL and Leap Motion,
2015. https://developer-archive.leapmotion.com/gallery/
touch-with-webgl-leap-motion.

G. Lavoué, L. Chevalier, and F. Dupont. Streaming compressed 3D
data on the web using JavaScript and WebGL. In Proceedings of the
18th International Conference on 3D Web Technology, Web3D ’13, pages
19-27, New York, NY, USA, 2013. ACM.

G. Lavoué, L. Chevalier, and F. Dupont. Progressive streaming of
compressed 3D graphics in a web browser. In ACM SIGGRAPH 2014
Talks, SIGGRAPH ’14, pages 43:1-43:1, New York, NY, USA, 2014.
ACM.

H. Lee, G. Lavoué, and F. Dupont. Rate-distortion optimization for pro-
gressive compression of 3D mesh with color attributes. Visual Computing,
28(2):137-153, 2012.

https://www.khronos.org/opengles
https://www.khronos.org/webgl
https://www.khronos.org/webgl
https://www.khronos.org/gltf
https://www.khronos.org/gltf
https://www.khronos.org/news/events/2015-siggraph
https://www.khronos.org/news/events/2015-siggraph
https://www.kubity.com
https://developer-archive.leapmotion.com/gallery/touch-with-webgl-leap-motion
https://developer-archive.leapmotion.com/gallery/touch-with-webgl-leap-motion

84

[111]

[112]

[113]
[114]

[115]

[116]

[117]

[118]

[119]
[120]

[121]
[122]

[123]

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References

C. Lehmann and J. Dollner. Annotating 3D content in interactive,
virtual worlds. In Proceedings of the 18th International Conference on
8D Web Technology, Web3D ’13, pages 67-70, New York, NY, USA,
2013. ACM.

C. Leoni, M. Callieri, M. Dellepiane, D. P. O’Donnell, R. Rosselli
Del Turco, and R. Scopigno. The dream and the cross: A 3D scanning
project to bring 3D content in a digital edition. Journal on Computing
and Cultural Heritage, 8(1):5:1-5:21, 2015.

Leopoly Ltd. Leopoly, 2015. https://leopoly.com.

C. Leung. C3DL - Canvas 3D JS library, 2008. https://github.com/
cathyatseneca/c3dl.

M. Limper, Y. Jung, J. Behr, and M. Alexa. The POP buffer: Rapid
progressive clustering by geometry quantization. Computer Graphics
Forum, 32(7):197-206, 2013.

M. Limper, S. Wagner, C. Stein, Y. Jung, and A. Stork. Fast delivery of
3D web content: A case study. In Proceedings of the 18th International
Conference on 3D Web Technology, Web3D ’13, pages 11-17, New York,
NY, USA, 2013. ACM.

M. Limper, M. Thoner, J. Behr, and D. W. Fellner. SRC — A streamable
format for generalized web-based 3D data transmission. In Proceedings
of the 19th International ACM Conference on 3D Web Technologies,
Web3D ’14, pages 35-43, New York, NY, USA, 2014. ACM.

D. P. Luebke. Level of Detail for 3D Graphics. Morgan Kaufmann
Publishers, Burlington, MA, USA, 2003.

LWJGL. Lightweight Java Game Library, 2007. https://www.lwjgl.org.

B. M. Macq, P. Rondao-Alface, and M. Montafiola Sales. Applicability of
watermarking for intellectual property rights protection in a 3D printing
scenario. In Proceedings of the 20th International Conference on 3D
Web Technology, Web3D ’15, pages 89-95, New York, NY, USA, 2015.
ACM.

L. Malomo. Generalized trackball and 3D touch interaction. Masters
thesis, Universita degli Studi di Pisa, 2013.

D. Malyshau. Kri-Web — Functional 3D engine for the web, 2012.
https://code.google.com/archive/p/kri-web.

C. Marion and J. Jomier. Real-time collaborative scientific WebGL
visualization with WebSocket. In Proceedings of the 17th International
Conference on 3D Web Technology, Web3D 12, pages 47-50, New York,
NY, USA, 2012. ACM.

https://leopoly.com
https://github.com/cathyatseneca/c3dl
https://github.com/cathyatseneca/c3dl
https://www.lwjgl.org
https://code.google.com/archive/p/kri-web

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References 85

[124]
[125]
[126]
[127]

[128]

[129]
[130]
[131]

[132]
[133]
[134]

[135]

[136]

[137]
[138]

[139]

L. Matheson, N. Schwinghamer, and A. Yanes. Pinshape, 2013. https:
//pinshape.com.

MATLAB. Simulink 3D animation, 2002. https://www.mathworks.com/
products/3d-animation.html.

Microsoft Corporation. ActiveX, 1996. https://msdn.microsoft.com/
en-us/library /aa751972(VS.85).aspx.

Microsoft Corporation. Silverlight, 2007. https://www.microsoft.com/
silverlight.

C. Mouton, K. Sons, and I. J. Grimstead. Collaborative visualization:
Current systems and future trends. In Proceedings of the 16th Interna-
tional Conference on 3D Web Technology, Web3D 11, pages 101-110,
New York, NY, USA, 2011. ACM.

Mozilla. Canvas 3D, 2007. https://wiki.mozilla.org/Canvas:3D.
Mozilla. A-Frame, 2015. https://aframe.io.

Mozilla. Device Motion Event, 2016. https://developer.mozilla.org/
en-US/docs/Web/API/DeviceMotionEvent.

Mozilla. Device Orientation Events, 2016. https://developer.mozilla.
org/en-US/docs/Web/API/DeviceOrientationEvent.

Mozilla. WebVR, 2016. https://developer.mozilla.org/en-US/docs/Web/
API/WebVR_APL

R. K. Mueller, J. Gay, and M. Moissette. OpenJSCAD, 2013. https:
//openjscad.org.

F. Mwalongo, M. Krone, M. Becher, G. Reina, and T. Ertl. Remote
visualization of dynamic molecular data using WebGL. In Proceedings
of the 20th International Conference on 3D Web Technology, Web3D ’15,
pages 115-122, New York, NY, USA, 2015. ACM.

F. Mwalongo, M. Krone, G. Reina, and T. Ertl. State-of-the-art report
in web-based visualization. Computer Graphics Forum, 35(3):553-575,
2016.

MyMiniFactory. MyMiniFactory, 2013. https://www.myminifactory.
com.

NASA Jet Propulsion Laboratory. Experience Curiosity, 2015. https:
//eyes.nasa.gov /curiosity.

G. M. Nielson and D. R. Olsen, Jr. Direct manipulation techniques
for 3D objects using 2D locator devices. In Proceedings of the 1986
Workshop on Interactive 3D Graphics, I3D 86, pages 175-182, New York,
NY, USA, 1987. ACM.

https://pinshape.com
https://pinshape.com
https://www.mathworks.com/products/3d-animation.html
https://www.mathworks.com/products/3d-animation.html
https://msdn.microsoft.com/en-us/library/aa751972(VS.85).aspx
https://msdn.microsoft.com/en-us/library/aa751972(VS.85).aspx
https://www.microsoft.com/silverlight
https://www.microsoft.com/silverlight
https://wiki.mozilla.org/Canvas:3D
https://aframe.io
https://developer.mozilla.org/en-US/docs/Web/API/DeviceMotionEvent
https://developer.mozilla.org/en-US/docs/Web/API/DeviceMotionEvent
https://developer.mozilla.org/en-US/docs/Web/API/DeviceOrientationEvent
https://developer.mozilla.org/en-US/docs/Web/API/DeviceOrientationEvent
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API
https://openjscad.org
https://openjscad.org
https://www.myminifactory.com
https://www.myminifactory.com
https://eyes.nasa.gov/curiosity
https://eyes.nasa.gov/curiosity

86

[140]

[141]

[142]

[143]

[144]

[145]

[146]
[147]

[148]

[149]
[150]
[151]

[152]

[153]

[154]

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References

M. Nobel-Jgrgensen. KickJS — A WebGL game engine for modern web
browsers, 2011. http://www.kickjs.org.

Octaga Visual Solutions. Octaga Player, 2006. http://www.octagavs.
com/solutions/web.

Oculus VR. Ocolus Rift, 2016. https://www.oculus.com/rift.

R. Ohbuchi, H. Masuda, and M. Aono. Watermarking three-dimensional
polygonal models. In Proceedings of the 5th ACM International on
Multimedia New York, NY, USA, 1997. ACM.

R. Ohbuchi, H. Masuda, and M. Aono. Watermarking three-dimensional
polygonal models through geometric and topological modifications. IEEE
Journal on Selected Areas in Communications, 16(4):551-560, 1998.

R. Ohbuchi, A. Mukaiyama, and S. Takahashi. A frequency-domain
approach to watermarking 3D shapes. Computer Graphics Forum, 21:
373-382, 2002.

S. Ortiz. Is 3D finally ready for the web? Computer, 43(1):14-16, Jan
2010.

G. A. Pachikov. Cortona 3D, 2006. http://www.cortona3d.com.

M. Patel, M. White, K. Walczak, and P. Sayd. Digitisation to presenta-
tion — Building virtual museum exhibitions. In Proceedings of Vision,
Video, Graphics, Southend-on-sea, UK, 2003. IMA.

M. Persson. Minecraft, 2009. https://minecraft.net.
C. Pinson. OSGJS, 2011. http://osgjs.org.

F. Ponchio and M. Dellepiane. Fast decompression for web-based view-
dependent 3D rendering. In Proceedings of the 20th International Con-
ference on 3D Web Technology, pages 199-207, 2015. ACM.

F. Ponchio and M. Dellepiane. Multiresolution and fast decompression
for optimal web-based rendering. Graphical Models, 88:1 — 11, 2016.

F. Ponchio, M. Potenziani, M. Dellepiane, M. Callieri, and R. Scopigno.
The ARTADNE Visual Media Service. In Proceedings of the 43rd Com-
puter Applications and Quantitative Methods in Archaeology Conference,
pages 433-442, 2015.

M. Potenziani, M. Callieri, M. Dellepiane, M. Corsini, F. Ponchio, and
R. Scopigno. 3DHOP: 3D heritage online presenter. Computer &
Graphics, 52:129-141, 2015.

http://www.kickjs.org
http://www.octagavs.com/solutions/web
http://www.octagavs.com/solutions/web
https://www.oculus.com/rift
http://www.cortona3d.com
https://minecraft.net
http://osgjs.org

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References 87

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]
[165]

[166]

E. Praun, H. Hoppe, and A. Finkelstein. Robust mesh watermarking.
In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’99, pages 49-56, New York,
NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

E. Puppo and R. Scopigno. Simplification, LoD and multiresolution
principles and applications. In D. Fellner and L. Szirmay-Kalos, eds,
Eurographics 1997. The Eurographics Association, Geneva, Switzerland,
1997.

D. Raggett. Extending WWW to support platform independent virtual
reality. Technical report, 1994. https://www.w3.org/People/Raggett/
vrml/vrml.html.

B. Resch, R. Wohlfahrt, and C. Wosniok. Web-based 4D visualization of
marine geo-data using WebGL. Cartography and Geographic Information
Science, 41(3):235-247, 2014.

J. F. Richardsoon. SimVRML, 2002. https://sourceforge.net/projects/
simvrml.

A. S. Rose and P. W. Hildebrand. NGL viewer: A web application for
molecular visualization. Nucleic Acids Research, 43(W1):W576-W579,
2015.

B. C. Russell, R. Martin-Brualla, D. J. Butler, S. M. Seitz, and L. S.
Zettlemoyer. 3D Wikipedia: Using online text to automatically label
and navigate reconstructed geometry. ACM Transactions on Graphics,
32(6):193:1-193:10, 2013.

J. R. Sanchez, D. Oyarzun, and R. Diaz. Study of 3D web technologies
for industrial applications. In Proceedings of the 17th International
Conference on 3D Web Technology, Web3D ’12, pages 184-184, New
York, NY, USA, 2012. ACM.

B. R. Schatz and J. B. Hardin. NCSA Mosaic and the World Wide
Web: Global hypermedia protocols for the internet. Science, 265(5174):
895-901, 1994.

M. Schuetz. Potree, 2013. http://potree.org.

M. Schuetz. Rendering large point clouds in web browsers. In Central
European Seminar on Computer Graphics 2015, 2015.

D. Seo, B. Yoo, and H. Ko. Webized 3D experience by HTML5 annotation
in 3D web. In Proceedings of the 20th International Conference on 3D
Web Technology, Web3D ’15, pages 73-80, New York, NY, USA, 2015.
ACM.

https://www.w3.org/People/Raggett/vrml/vrml.html
https://www.w3.org/People/Raggett/vrml/vrml.html
https://sourceforge.net/projects/simvrml
https://sourceforge.net/projects/simvrml
http://potree.org

88

[167]

[168]
[169]

[170]

[175]

[176]

[177]
[178]
[179]

[180]

[181]

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References

D. Seo, B. Yoo, J. Choi, and H. Ko. Webizing 3D contents for super
multiview autostereoscopic displays with varying display profiles. In
Proceedings of the 21st International Conference on Web3D Technology,
Web3D ’16, pages 155-163, New York, NY, USA, 2016. ACM.

Shapeways. Shapeways, 2013. https://www.shapeways.com.

S. Shi and C. Hsu. A survey of interactive remote rendering systems.
ACM Computing Surveys, 47(4):57:1-57:29, 2015.

K. Shoemake. Arcball: A user interface for specifying three-dimensional
orientation using a mouse. In Proceedings of the Conference on Graphics

Interface ’92, pages 151-156, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

Sketchfab. Sketchfab, 2014. https://sketchfab.com.
Z. Smith and B. Pettis. Thingiverse, 2011. https://www.thingiverse.com.
Smithsonian Institution. Smithsonian X3D, 2011. http://3d.si.edu.

Y. Song, W. Wei, L. Deng, P. Du, Y. Zhang, and D. Nie. 3D-CollaDesign:
A real-time collaborative system for web 3D design. In Proceedings of the
19th IEEE International Conference on Computer Supported Cooperative
Work in design, pages 407412, New York, NY, USA, 2015. IEEE.

K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek.
XML3D: Interactive 3D graphics for the web. In Proceedings of the
15th International Conference on Web 8D Technology, Web3D 10, pages
175-184, New York, NY, USA, 2010. ACM.

K. Sons, C. Schlinkmann, F. Klein, D. Rubinstein, and P. Slusallek.
XML3D.js: Architecture of a polyfill implementation of XML3D. In Pro-
ceedings of the 6th Workshop on Software Engineering and Architectures
for Realtime Interactive Systems (SEARIS), pages 17-24, 2013.

Stackgl. Stackgl, 2015. https://github.com/stackgl/stackgl.github.io.
J. A. Stewart. FreeWRL, 1998. http://freewrl.sourceforge.net.

P. S. Strauss and R. Carey. An object-oriented 3D graphics toolkit. In
Proceedings of the 19th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’92; pages 341-349, New York, NY,
USA, 1992. ACM.

P. S. Strauss, P. Issacs, and J. Shrag. The design and implementation
of direct manipulation in 3D: SIGGRAPH 2002 course notes. 2002.

Sun Microsystems. JAVA3D — The Java 3D API, 1998. http://www.
oracle.com/technetwork /articles/javase/index-jsp-138252.html.

https://www.shapeways.com
https://sketchfab.com
https://www.thingiverse.com
http://3d.si.edu
https://github.com/stackgl/stackgl.github.io
http://freewrl.sourceforge.net
http://www.oracle.com/technetwork/articles/javase/index-jsp-138252.html
http://www.oracle.com/technetwork/articles/javase/index-jsp-138252.html

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References 89

[182]

— = = = =
® o ®©
e e A

[191]
[192]

193]
[194]
[195]
[196]
[197]
[198]
[199]

[200]

J. Sutter, K. Sons, and P. Slusallek. Blast: A binary large structured
transmission format for the web. In Proceedings of the 19th International
ACM Conference on 8D Web Technologies, Web3D 14, pages 45-52,
New York, NY, USA, 2014. ACM.

Threeding. Threeding, 2013. https://www.threeding.com.

M. Toschlog. Parallax, 2012. http://parallax3d.org.

Trimble Inc. SketchUp, 2006. https://www.sketchup.com.
Triumph LLC. Blend4web, 2014. https://www.blend4web.com.
Turbulenz. Turbulenz, 2009. http://biz.turbulenz.com.

Uber. Deck.gl, 2015. https://uber.github.io/deck.gl.

F. Uccheddu, M. Corsini, and M. Barni. Wavelet-based blind watermark-
ing of 3D models. In Proceedings of the 2004 Workshop on Multimedia
and Security, pages 143-154, New York, NY, USA, 2004. ACM.

C. Ulbrich and C. Lehmann. A DCC pipeline for native 3D graphics
in browsers. In Proceedings of the 17th International Conference on 8D
Web Technology, Web3D 12, pages 175-178, New York, NY, USA, 2012.
ACM.

Unity Technologies. Unity3D, 2005. https://unity3d.com.

University College London. 3D Petrie Museum, 2009. http://www.ucl.
ac.uk/3dpetriemuseum.

University of Applied Sciences Northwestern Switzerland. OpenWeb-
Globe, 2011. https://github.com/OpenWebGlobe.

A. van Dam. Post-WIMP user interfaces. Communications of the ACM,
40(2):63-67, 1997.

Virtual Heritage Lab. Aton front-end, 2015. http://osiris.itabc.cnr.it/
scenebaker /index.php/projects/aton.

Visionary Cross. The Visionary Cross project, 2015. http://vcg.isti.cnr.
it/cross.

Visual Computing Lab. SpiderGL — 3D graphics for next-generation
WWW, 2010. http://vecg.isti.cnr.it/spidergl.

Visual Computing Lab. Nexus — Multiresolution visualization, 2013.
http://veg.isti.cor.it /nexus.

Visual Computing Lab. 3DHOP — 3D Heritage Online Presenter, 2014.
http://3dhop.net.

Visual Computing Lab. MeshLabJS, 2014. http://www.meshlabjs.net.

https://www.threeding.com
http://parallax3d.org
https://www.sketchup.com
https://www.blend4web.com
http://biz.turbulenz.com
https://uber.github.io/deck.gl
https://unity3d.com
http://www.ucl.ac.uk/3dpetriemuseum
http://www.ucl.ac.uk/3dpetriemuseum
https://github.com/OpenWebGlobe
http://osiris.itabc.cnr.it/scenebaker/index.php/projects/aton
http://osiris.itabc.cnr.it/scenebaker/index.php/projects/aton
http://vcg.isti.cnr.it/cross
http://vcg.isti.cnr.it/cross
http://vcg.isti.cnr.it/spidergl
http://vcg.isti.cnr.it/nexus
http://3dhop.net
http://www.meshlabjs.net

90

[201]

[202]
[203]
[204]

[205]

[206]

[207]

[208]
[209]

[210]
[211]

[212]
[213]

[214]
[215]

[216]

The version of record is available at: http://dx.doi.org/10.1561/0600000083

References

Visual Computing Lab. ARIADNE — Visual Media Service, 2015. https:
//ariadnel.isti.cnr.it.

Vizor. Patches, 2014. https://patches.vizor.io.
Voxel.js. Voxel.js, 2013. http://voxeljs.com.

K. Walczak, W. Cellary, and M. White. Virtual museum exhibitions.
IEEFE Computer, 39:93-95, 2006.

E. Wallace. LightGL — A lightweight WebGL library, 2011. https:
//github.com/evanw /lightgl.js.

C. Ware and S. Osborne. Exploration and virtual camera control in
virtual three-dimensional environments. In Proceedings of the 1990
Sympositum on Interactive 3D Graphics, I3D ’90, pages 175-183, New
York, NY, USA, 1990. ACM.

Web3D Consortium. What is X3D graphics?, 2004. http://www.web3d.
org/what-x3d-graphics.

J. Wilhelmy. Inka3D, 2011. http://www.inka3d.com.

C. A. Wingrave, B. Williamson, P. Varcholik, J. Rose, A. Miller, E. Char-
bonneau, J. N. Bott, and J. J. LaViola. The Wiimote and beyond:
Spatially convenient devices for 3D user interfaces. IEEE Computer
Graphics and Applications, 30(2):71-85, 2010.

S. Wittens. MathBox, 2012. https://gitgud.io/unconed /mathbox.

R. Wojciechowski, K. Walczak, M. White, and W. Cellary. Building
virtual and augmented reality museum exhibitions. In Proceedings of
the Ninth International Conference on 3D Web Technology, Web3D ’04,
pages 135-144, New York, NY, USA, 2004. ACM.

XTK Developers. X Toolkit API, 2012. https://github.com/xtk.

S. Zafeiriou, A. Tefas, and I. Pitas. Blind robust watermarking schemes
for copyright protection of 3D mesh objects. IFEE Transactions on
Visualization and Computer Graphics, 11(5):596-607, 2005.

A. Zipf. OSM-3D, 2010. http://www.osm-3d.org.

F. Zollo, L. Caprini, O. Gervasi, and A. Costantini. X3DMMS: An
X3DOM tool for molecular and material sciences. In Proceedings of the
16th International Conference on 3D Web Technology, Web3D ’11, pages
129-136, New York, NY, USA, 2011. ACM.

P. Zuspan, J. Finkelstein, and M. Finkelstein. Kokowa, 2015. https:
//www.kokowa.co.

https://ariadne1.isti.cnr.it
https://ariadne1.isti.cnr.it
https://patches.vizor.io
http://voxeljs.com
https://github.com/evanw/lightgl.js
https://github.com/evanw/lightgl.js
http://www.web3d.org/what-x3d-graphics
http://www.web3d.org/what-x3d-graphics
http://www.inka3d.com
https://gitgud.io/unconed/mathbox
https://github.com/xtk
http://www.osm-3d.org
https://www.kokowa.co
https://www.kokowa.co

	Introduction
	Web3D, from Plug-ins to WebGL
	Early Approaches
	The WebGL Revolution

	Grand Challenges for 3D on the Web
	The Declarative/Imperative Dichotomy
	Managing 3D Data over the Internet
	Production and Protection of Shared 3D Content Online

	Feature-Based Characterization of Web3D Solutions
	Which Categorization of the Existing Solutions?
	Characterizing and Grouping Web3D Features

	Analysis of the Features
	Data Handling
	Scene Setup
	User Interaction
	Multimedia Integration
	Publishing Context

	Discussion
	Classification
	Application Fields

	Conclusions
	Research Directions

	Acknowledgments
	References

